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Abstract 
This study conducts a comparative evaluation of two cutting-
edge deep learning models, You Only Look Once (YOLO) and 
VGG16, utilizing fundus images for automated ocular disease 
classification. The research endeavors to discern between Normal 
(N), Diabetes (D), Glaucoma (G), and Cataract (C), prevalent in 
fundus imagery. Fundus images, being a cornerstone in 
ophthalmic diagnostics, pose unique challenges due to variations 
in image quality, pathology manifestation, and disease 
complexity. By rigorously comparing the performance, strengths, 
and limitations of YOLOv8, YOLOv5, and VGG16 on this 
specific dataset, this study aims to provide insights into their 
efficacy in accurately diagnosing ocular conditions. The 
outcomes of this investigation have the potential to advance the 
development of more precise and efficient automated diagnostic 
systems for ocular diseases, thereby facilitating early intervention 
and improving patient care in ophthalmology. 
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1. Introduction 

Ocular diseases such as diabetic retinopathy, 
glaucoma, and cataracts are leading causes of vision 
impairment and blindness across the globe. The world 
faces the challenge of detecting eye diseases, especially 
glaucoma   . Early detection and accurate diagnosis are 
pivotal for effective management and treatment of these 
conditions. While the diagnosis of such diseases 
traditionally depends on the manual interpretation of 
fundus images by experienced ophthalmologists, this 
process can be subjective and prone to errors, especially in 
underserved areas with a shortage of specialists [1] [3]. 

Advancements in deep learning have 
revolutionized the field of medical image analysis, 
offering new avenues to enhance diagnostic precision and 
reliability. Convolutional neural networks (CNNs), a class 
of deep learning algorithms, are particularly well-suited 
for image recognition tasks and have been increasingly 
adopted for the automated analysis of medical imagery, 
including ocular fundus photographs. 

This study focuses on a comparative evaluation of 
two prominent CNN architectures: You Only Look Once 
(YOLO) and VGG16. YOLO is primarily renowned for its 
efficiency in object detection tasks, offering a unique 
approach that divides images into regions and predicts 
bounding boxes and probabilities for each region 
simultaneously. This makes it particularly fast and 
effective in real-time applications. On the other hand, 
VGG16 is known for its simplicity and depth, which have 
proven effective in various image classification challenges, 
making it a benchmark in the field of visual recognition 
tasks [2]. 

By conducting a thorough comparative analysis 
of these two models on a dedicated dataset of fundus 
images, this paper aims to uncover their respective 
strengths and limitations in the context of ocular disease 
classification. The objective is to determine which model 
provides more accurate and reliable performance, thereby 
guiding future applications in automated ocular 
diagnostics and contributing to the broader field of 
medical image analysis. 

2. Literature Review  

In Elloumi et al. [5] discussed the use of deep 
learning in diagnosing eye diseases through images of the 
fundus of the eye. It presents a survey of various methods 
for detecting eye diseases based on deep learning, 
analyzing preprocessing steps, and neural network 
architectures. It also discusses the hardware and software 
environment required to employ deep learning architecture, 
the principles of experimentation involved, and the 
databases used in the training and testing stages. The paper 
identifies a significant difference in the sizes of input 
images used in various deep learning architectures. It 
discusses two categories of deep learning architectures, 
those based entirely and partially on deep learning, for 
detecting eye diseases, with several methods falling into 
each category, always incorporating a preprocessing step 
of the fundus image before deep learning processing. 
These methods are characterized by higher detection 
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performance, thanks to their ability to tailor the network 
regarding the detection goal.  

Ahmad et al. [7] paper aimed to classify external 
eye diseases using a dataset of images obtained from a 
digital camera. The dataset is categorized into four major 
classes based on the part of the eye affected by the disease, 
with further subdivisions for each class. The paper 
proposes the use of a Hierarchical multi-label 
classification (HMC) technique for classification, which is 
a widely used approach in text classification, image 
annotation, and bioinformatics problems, where examples 
can be assigned to multiple paths of the class hierarchy 
simultaneously. The HMC approach involves assigning 
each example a subset of consistent labels based on a 
hierarchical structure. The paper also extracts color 
histogram features and law texture features from the 
images for classification. The paper uses algorithms and 
hierarchical multi-label Artificial Neural Network for 
classification. The overall prediction accuracy achieved is 
75.7142%. The paper suggests that additional external eye 
diseases like cysts, glaucoma, keratitis, and uveitis can be 
added to the classification in the future. Expanding the 
dataset with more examples of minor classifications is also 
recommended to improve classification accuracy. 

Li et al. [8] discussed learning technology that 
was conducted to provide an in-depth assessment of the 
levels of computational pathology. The study includes the 
Ocular Image Analysis-Intelligent Ocular Disease 
Recognition (OIA-ODIR) dataset, which includes 10,000 
images of the right and left eyes of 5,000 patients. 9 
different versions of the synthetic networks Vgg-16, 
ResNet-18, ResNet-50, ResNeXt-50, SE-ResNet-50, SE 
ResNeXt-50, Inception-v4, Densenet, and CafeNe were 
used. The fine-line network was defined in Two sets of 
treatments using three different methods (SUM, PROD 
and CONCAT) combine features for analysis in multiple 
disease classifications. Through experimental verification, 
they found that the only element combination method 
performs better compared to other methods. It does not 
improve performance, but increasing network width can 
produce better results, and consolidating computer 
networks can help improve performance.  

Dipu et al [9] addressed the challenge of early 
and accurate ocular disease detection through automated 
diagnosis using retinal fundus images. To achieve this, 
they implemented different deep learning models, 
including ResNet-34, EfficientNet, MobileNetV2, and 
VGG-16, on a large dataset that contains 5000 cases of 
color fundus photographs (CFPs). The dataset used by the 
authors is the Ocular Disease Intelligent Recognition 
(ODIR) dataset, which is publicly available, and it is split 
into eight different ocular disease classification categories. 

Results showed that the VGG-16 model achieved the 
highest accuracy (97.23%) among the tested models. The 
authors suggest further development of such systems to 
build a user-friendly and real-time ocular disease 
classification system.  

Bernabe et al. [10] paper aimed to address the 
problem of eye diseases, specifically Glaucoma and 
Diabetic Retinopathy, which are significant global health 
issues. The purpose is to develop an intelligent pattern 
classification algorithm based on Convolutional Neural 
Networks (CNNs) as the primary algorithm to accurately 
detect and classify these diseases. CNN is trained using 
two different datasets of retinography images of Glaucoma 
and Diabetic Retinopathy. The training process involves 
K-fold Cross Validation to validate the performance of the 
algorithm. The accuracy percentage of the proposed 
classifier is reported to be 99.89%. Additionally, 
numerical metrics such as recall, specificity precision, and 
F1 score, all with values close to 1, support the suitable 
performance of the classifier. The paper suggests future 
work that could involve improving image analysis by 
implementing new channels for the RGB matrix and 
analyzing healthy images as well. Additionally, further 
research could focus on classifying other eye diseases and 
expanding the application of the proposed algorithm to a 
broader range of conditions.  

Ling et al. [11] introduced DeepDR, a deep 
learning system tailored for the precise detection of 
diabetic retinopathy. Trained on a vast dataset of 466,247 
fundus images, DeepDR demonstrates exceptional 
accuracy in grading retinopathy severity and identifying 
lesions. The study's utilization of IoU metrics for 
evaluating the segmentation network further emphasizes 
its reliability. Utilizing Python 3.7.1 and OpenCV 2 for 
analysis and processing, this study marks a significant 
advancement in diabetic retinopathy diagnosis. However, 
the study lacks a comparative analysis of DeepDR's 
performance against existing methods or systems for 
diabetic retinopathy detection and grading.  

Shamsan et al. [12] conducted a study to explore 
the use of deep learning for the classification of eye 
diseases in color fundus photographs (CFP). Early 
detection and accurate classification of these diseases are 
crucial for preventing blindness. However, it can be 
challenging to differentiate between early-stage diseases. 
The authors proposed a hybrid approach that combines 
feature extraction with fusion methods to improve 
classification accuracy. They implemented three methods: 
first, they classified features extracted from separate 
MobileNet and DenseNet121 models with an artificial 
neural network (ANN) after dimensionality reduction 
using Principal Component Analysis (PCA). Second, they 
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classified fused features from both models with an ANN, 
again with dimensionality reduction. Finally, they 
classified fused features alongside handcrafted features 
using an ANN. The dataset used in the study is the OIH 
dataset, which includes 4217 CFP images of three types of 
eye disease and a normal class. The third method achieved 
the best results with an AUC of 99.23% and an accuracy 
of 98.5%, demonstrating the potential of combining deep 
learning features with handcrafted ones for accurate eye 
disease classification.  

Arif et al. [13] conducted a study on classifying 
eye diseases in fundus images using the CNN based 
EfficientNet-B0 architecture. They categorized fundus 
images into normal, cataract, and glaucoma classes, 
achieving an accuracy of 79.22% with precision, recall, 
and F1-score values exceeding 78%. The research 
demonstrated the potential of EfficientNet in enhancing 
the diagnostic process for eye conditions, showcasing 
improved performance metrics compared to previous 
studies. By leveraging deep learning and advanced image 
processing techniques, Arif et al. (2023) highlighted the 
efficiency and accuracy of CNN models in classifying eye 
diseases based on fundus images. These findings 
underscore the significance of utilizing advanced 
architectures like EfficientNet in medical imaging 
applications, paving the way for more accurate and 
efficient diagnosis of eye diseases with implications for 
enhancing patient care and treatment outcomes.  

Babaqi et al. [14] conducted a study on eye 
disease classification using deep learning techniques, 
focusing on the differentiation of normal eyes from those 
affected by diabetic retinopathy, cataracts, and glaucoma. 
The research utilized convolutional neural networks 
(CNNs) and transfer learning to achieve high accuracy 
rates in multi-class classification tasks. Transfer learning, a 
method where a model developed for one task is 
repurposed for another, played a significant role in 
optimizing the classification of eye diseases. The dataset 
consisted of approximately 4200 colored images of normal 
eyes, cataracts, diabetic retinopathy, and glaucoma, which 
were preprocessed and divided into training, testing, and 
validation subsets for model evaluation. The study 
demonstrated that transfer learning outperformed the 
traditional CNN approach, achieving a 94% accuracy rate 
compared to 84%. Evaluation metrics such as precision, 
recall, and F1-score were employed to assess the model's 
performance, highlighting the impact of transfer learning 
on enhancing CNN accuracy.  

Afsana et al. [15] introduce a novel approach to 
automate the detection and classification of eye diseases 
from fundus images, eliminating the need for time-
consuming manual evaluation by experts. Their method 

employs a deep Convolutional Neural Network (CNN)-
based ensemble model with 20 layers, incorporating 
various activation, optimization, and loss functions. By 
utilizing pre-processing techniques like contrast-limited 
adaptive histogram equalization (CLAHE) and a Gaussian 
filter, image quality is improved and noise is reduced. 
Augmentation techniques during training prevent 
overfitting, ensuring model robustness. The CNN model is 
compared with pre-trained models (VGG16, DenseNet201, 
and ResNet50), demonstrating superior performance. 
Experimental results on the ODIR dataset validate their 
approach, marking a significant advancement in automated 
eye disease detection.  

Current research on ocular disease classification 
using retinal images often relies on deep-learning models 
such as YOLO and VGG16. However, these models are 
typically utilized in isolation, which restricts their capacity 
to produce a comprehensive evaluation of ocular health. 
Furthermore, there is a lack of thorough comparison 
regarding the efficiency and accuracy of these models in 
disease classification [4]. 

Our research effectively addresses these 
limitations by conducting an extensive comparative study 
between YOLO and VGG16. In addition to comparing 
these two models, we further explore the topic by 
incorporating two different versions of YOLO, namely 
versions 8 and 5. This comprehensive approach enables us 
to examine the influence of YOLO architecture choice on 
performance in ocular disease diagnosis. This thorough 
analysis holds significant importance in the field for 
various reasons. 

First and foremost, it furnishes valuable insights 
into the strengths and weaknesses of each model when 
utilized for ocular disease classification. By discerning 
which model excels at identifying specific types of ocular 
conditions, researchers can customize their deep-learning 
approach to enhance disease detection [6]. Additionally, 
the comparison of these models' efficiency is of utmost 
importance. In real-world scenarios, processing speed can 
be a crucial factor, particularly in time-sensitive settings. 
Understanding which model provides the optimal balance 
between accuracy and efficiency can be pivotal for clinical 
utilization.  

Ultimately, this study sets the stage for future 
exploration of the potential advantages of integrating these 
models. Through the amalgamation of YOLO and VGG16, 
a more resilient and precise automated diagnosis system 
for ocular diseases could be formulated. Such a system has 
the potential to substantially enhance early detection rates 
and, in turn, improve patient outcomes. In summary, our 
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comparative study not only illuminates the distinct 
capabilities of these models in ocular disease diagnosis but 
also establishes a foundation for future progress in 
leveraging deep learning algorithms for a more thorough 
evaluation of eye health. 

3. Dataset collection 

The "Eye-Disease Image Dataset" on 
Roboflow is a curated collection of 2555 total retinal 
images used for the classification of ocular conditions.  
The dataset has been structured into three subsets to 
support the development and validation of machine 
learning models, (88%) for training and with a 
validation set (8%), and finally evaluated on a 
separate test set (4%) to assess their performance. 

These images typically represent a variety of 
ocular conditions, potentially including but not limited 
to normal retinal images, diabetic retinopathy, 
glaucoma, and cataracts. The images may vary in 
terms of presentation and severity of the conditions 
depicted, offering a diverse range of cases for 
comprehensive model training. 

The dataset classifies patients into four labels, 
including: 

- Normal (N)              - Glaucoma (G) 

- Cataract (C)             - Diabetes (D) 

4. Methodology  

Figure 1: Methodology. 

 
 
4.1 Data Preprocessing: 

A. Data Acquisition: 

A subset of the "Eye-Disease Image Dataset" from 
Roboflow is utilized, comprising: 

 Training Set: 70% of the dataset (448 images). 
 Validation Set: 20% of the dataset (128 images). 
 Test Set: 10% of the dataset (64 images). 
 

 

B. Label Encoding: 

The dataset categorizes patients into four labels: Normal 
(N), Diabetes (D), Glaucoma (G), and Cataract (C). 

C. Data Augmentation: 

Rotation: 
Images in the training set are rotated by various degrees 
(e.g., 90°, 180°, 270°) to introduce diversity and enhance 
model robustness. Rotation ensures that the model learns 
to classify ocular conditions regardless of their orientation 
within the image. 

Resizing to 640x640 pixels: 
All images are resized to a standard dimension of 640x640 
pixels. Resizing ensures uniformity in input size, 
facilitating efficient model training and inference. This 
standard size is chosen to balance computational efficiency 
with sufficient resolution for accurate classification. 

4.2 Model Selection: 

In our effort to effectively classify ocular conditions, 
we have carefully selected a range of models designed to 
address different aspects of the task at hand. 

1. YOLOv5: As part of our comprehensive evaluation, we 
have included YOLOv5, a variant of YOLO. By 
comparing its performance with YOLOv8, we aim to gain 
insights into the specific strengths and weaknesses of each 
model, ultimately refining our strategy. 

2. YOLOv8: To explore the limitations of YOLOv5, we 
have included YOLOv8 in our comparative study. This 
model is an excellent choice due to its seamless integration 
of object detection and classification capabilities [14]. Its 
efficiency in simultaneously detecting and categorizing 
ocular conditions within images positions it as a 
cornerstone of our approach. 

3. VGG16: Adding to our ensemble is VGG16, a well-
regarded convolutional neural network architecture 
specializing in image classification [15]. Leveraging its 
established reputation, VGG16 serves as a benchmark 
against which we measure the efficacy of YOLOv8 and 
YOLOv5. Through this comparative analysis, we aim to 
discern the most effective approach to ocular condition 
classification. 
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4.3 Model Training: 

A. YOLOv8 
 

We have leveraged Roboflow, a platform 
designed to streamline the management and preprocessing 
of image datasets for machine learning projects. It 
provides a wide range of tools and functionalities to 
simplify tasks such as data annotation, augmentation, and 
integration into machine learning workflows. 

 In our implementation of YOLOv8, we have 
categorized datasets into three subsets: training, validation, 
and testing, utilizing RoboFlow. The YOLOv8 model, the 
latest iteration (2.0) developed by Ultralytics, has 
demonstrated substantial effectiveness in the classification 
of ocular conditions. After a comprehensive evaluation of 
its performance, we have achieved an impressive 
validation accuracy of 92.5%. This accuracy is determined 
by the ratio of correctly labeled images to the total number 
of images within all validation set samples. 

Analysis of training loss: 

 
Figure 2: Training loss for YOLOv8. 

 
The above Figure 2 depicting the training loss, provides 
insight into the model's progression. Initially, there is a 
rapid decrease, followed by a stabilization, indicating 
effective learning. The consistently high validation 
accuracy suggests that the model generalizes well. The 
primary objective of minimizing loss and maximizing 
accuracy has been successfully achieved in this instance. 

Validation Accuracy: 
The validation accuracy graph in Figure 4 shows 

how well the model performs on new data. It initially 
fluctuates but stabilizes later, reaching peak accuracy after 
about 36 epochs. This accuracy refers to the model's 
ability to predict the highest probability class label 

accurately. Overall, stability and high validation accuracy 
indicate the model's good performance. 

 

 

Figure 3: Validation Accuracy for YOLOv8 

 

  

  

Figure 4: Implementation classification. 

 
B. YOLOv5 

Similarly, to train YOLOv5, we split the dataset 
into three sets: 70% for training, 20% for validation, and 
10% for testing. We also pre-processed the data using 
RoboFlow, which included orientation and resizing the 
images to 640x640. This was necessary to ensure a fair 
comparison between our two versions of the YOLO model.  

 
 

We trained a pre-existing YOLOv5 model for 
classification tasks, which was also developed by 
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Ultralytics. We experimented with different numbers of 
epochs and found that training for 50 epochs produced the 
best results. However, due to the limitations of the 
YOLOv5 model architecture compared to YOLOv8, the 
accuracy of the model remains relatively low. compared to 
YOLOv8, the accuracy of the model remains relatively 
low. 

 
 

 
 
 
 
 

 
Figure 5: Training accuracy for YOLOv5 

 
Figure 6: Training loss for YOLOv5 

The accuracy of the model reached its peak at the 
end of the 10th epoch, after which further improvements 
were observed with continued training beyond this point. 
As evidenced by the graph illustrating the training loss, it 
is apparent that the training loss consistently decreased 
with each successive epoch, ultimately achieving its 
minimum value at epoch 50. 

 
In terms of overall accuracy across the three data 

sets--training, validation, and testing--the model attained a 
rate of 63%. This accuracy is comparatively low when 
benchmarked against the performance metrics of YOLOv8. 
Nonetheless, the observed performance is both justifiable 
and anticipated, in accordance with the documentation 
provided by the development team at Ultralytics. The 
documentation indicates that each new iteration of YOLO 
is engineered to exhibit enhanced performance over its 
predecessors. 

 
Table 1 below demonstrates the different 

hyperparameters used to train the two versions of YOLO. 
Although the hyperparameters used in the two versions of 
the model were similar, the differences and advances in 
the YOLOv8 architecture were the primary reasons for the 
enhancement in the model's performance. 

 

 

Table 1: Hyperparameters for YOLO 

Hyperparameters  YOLOv5 YOLOv8  

Input image size 5350 5350 

Epochs 50 100 

Batch size 16 16 

Optimizer Adam Adamw 

Initial Learning rate 0.01 0.01 

Final Learning rate 0.01 0.01 

 
When comparing the hyperparameters of 

YOLOv5 and YOLOv8, both models share similar settings 
for input image size, epochs, batch size, initial learning 
rate, and final learning rate. However, an important 
distinction lies in the choice of optimizer. While YOLOv5 
utilizes the Adam optimizer, YOLOv8 implements 
AdamW as its optimizer. The use of AdamW in YOLOv8 
can provide benefits such as improved generalization and 
robustness due to its modified weight decay handling. 
Despite the similarities in most hyperparameters, the 
enhancements and additional layers in the YOLOv8 model 
architecture compared to YOLOv5 contribute significantly 
to its superior performance. 
 
 
C. VGG16 model: 

VGG16 is a convolutional neural network (CNN) 
architecture proposed by the Visual Engineering Group at 
the University of Oxford. It has gained popularity due to 
its simplicity and effectiveness in image classification 
tasks. The “16” in its name refers to the total number of 
weight layers it has. VGG16 consists of 16 weight layers, 
including 13 convolutional layers and 3 fully connected 
layers. Convolutional layers use small 3x3 filters with one 
step and zero padding to maintain spatial resolution. 
VGG16 is deeper than other convolutional networks due to 
its use of multiple layers stacked on top of each other. 

 
We implemented VGG16 in Colab Pro using a T4 

GPU and Keras as the framework. In the first experiment, 
we trained the model using the default settings: 10 epochs, 
32 batch size, and a learning rate of 0.001, resulting in an 
accuracy of 71.06%. To improve the performance and 
ensure the avoidance of overfitting, we reduced the 
number of epochs to 5, which led to a significant increase 
in accuracy to 76.09%. In the final experiment, aiming for 
further improvement, we decreased the learning rate to 
0.0001, along with freezing the base layers. This 
adjustment yielded the highest accuracy for the VGG16 
model, reaching 78.80%. 
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The empirical evidence presented in the initial 
graph showcasing the training and validation loss trends 
across 10 epochs provides valuable insights into the 
model's performance dynamics. Initially, a consistent 
decrease in training loss along with a parallel decline in 
validation loss suggests a progressive learning pattern. 
However, a notable deviation occurs after epoch 4, where 
the validation loss sharply rises while the training loss 
continues to decrease. This divergence signifies a classic 
symptom of overfitting, a phenomenon where the model 
excessively tunes itself to the nuances of the training data, 
consequently impairing its ability to generalize patterns 
effectively. 

 

 
Figure 7: Loss graph 

 

Figure 8: Accuracy graph 

 
Correspondingly, the accuracy graph 

complements this narrative by showcasing a 
consistent trend where the training accuracy 
consistently outperforms the validation accuracy. 
Such a discrepancy signifies a potential overreliance 
on specific training data characteristics without a 
corresponding ability to generalize. Despite a 
marginal convergence between the two accuracies 
over successive epochs, the ideal scenario would 
entail a closer alignment, with the validation 
accuracy slightly trailing behind. To enhance the 
model's generalization capacity and mitigate 

overfitting risks, strategies such as early stopping 
around epoch 3 or 4, model complexity reduction, 
regularization implementation, or data augmentation 
merit consideration. 
 

5.  Results & Discussion 
For the VGG16 result, we have: 
 

Table 2: VGG16 result table 

Epoch  Batch size Learning 
rate 

Accuracy  

10 32 0.001 71.06% 

5 32 0.001 76.09% 

10 32 0.0001 79.89% 

 
Analyzing the provided training configurations 

reveals key insights into their performance. Comparing the 
impact of epochs, we observe that increasing the number 
of epochs generally leads to improved accuracy, as 
evidenced by the higher accuracy achieved in 
configurations with more epochs. However, simply 
increasing epochs is not the sole factor influencing 
accuracy, as demonstrated by configuration 3, where a 
smaller learning rate yields the highest accuracy despite 
the same number of epochs as configuration 1. This 
highlights the significance of the learning rate for model 
convergence and accuracy. Specifically, configuration 3, 
with a smaller learning rate, outperforms the others, 
indicating the importance of fine-tuning hyperparameters. 
While batch size remains constant across all configurations, 
its influence on accuracy isn't directly evaluated here. In 
conclusion, these results underscore the importance of 
carefully tuning hyperparameters, particularly the learning 
rate, to achieve optimal model performance. Further 
exploration, potentially involving variations in batch size, 
could provide deeper insights into enhancing model 
training and accuracy. 
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Figure 9: confusion matrix for VGG16 
 

Figure 9 shows the analysis of the confusion 
matrix highlights the VGG16 notable challenges in 
accurately classifying specific categories, particularly with 
evident confusion patterns between Cataract (Class 0), 
Glaucoma (Class 2), and Normal (Class 3). Glaucoma 
(Class 2) exhibits the highest true positives at 100, yet 
simultaneously displays significant misclassifications, 
particularly stemming from Cataract (Class 0) and Normal 
(Class 3). Notably, Cataract (Class 0) frequently gets 
misclassified as Glaucoma (Class 2), while Normal (Class 
3) showcases a comparable trend of misidentification. 
Diabetic (Class 1) demonstrates a more evenly distributed 
misclassification profile across other classes.  
 

The overarching trend indicates a pronounced 
struggle for the model to effectively distinguish between 
these specific categories, thereby underscoring the 
imperative for enhanced feature engineering, a more 
balanced training dataset, or the adoption of more 
sophisticated classification algorithms to bolster its 
discriminatory prowess. This analysis underscores the 
critical need for targeted interventions to mitigate 
misclassification challenges and fortify the model's 
classification accuracy, especially for the intricate 
differentiation tasks inherent in the Cataract (Class 0), 
Glaucoma (Class 2), Normal (Class 3), and Diabetic (Class 
1) categories. 

 
For the two versions of YOLO, we have trained 

the models on different epoch numbers, as mentioned 
above. However, we have noticed that when training the 
two models on 100 epochs, it affects the model accuracy 
badly. Table 3 shows the training accuracy for the two 
versions of YOLO on different numbers of epochs.  

Table 3: Epoch and accuracy for YOLO 

Epoch 
YOLOv5 accuracy YOLOv8 

accuracy  

30 58%      86% 

50 63% 92% 

100 52% 81% 

 
Figure 10 shows the analysis of the confusion 

matrix underscores the YOLOv5 model's pronounced 
classification challenges, particularly in discerning 
between Cataract, Glaucoma, and Normal classes. Cataract 
(Class 0) is recurrently misidentified as Glaucoma (Class 
2), while Normal (Class 3) exhibits a comparable 
misclassification trend, indicating a significant overlap in 
the classification boundaries among these classes. Despite 
Glaucoma (Class 2) boasting the highest count of true 
positives (100), it contends with notable misclassifications, 
predominantly originating from Cataract (Class 0) and 
Normal (Class 3). In contrast, Diabetic (Class 1) 
showcases a more equitable distribution of 
misclassifications but still manifests confusion with other 
classes. 

 
Figure 10: Confusion matrix for YOLOv5 

 
The model's evident struggle to effectively 

differentiate between these classes highlights the 
imperative for refined feature engineering, a more diverse 
and balanced training dataset, or the adoption of advanced 
classification algorithms to bolster its discriminative acuity 
and curtail misclassification errors. This analysis 
accentuates the critical necessity for targeted 
enhancements to ameliorate the model's classification 
accuracy, particularly concerning the intricate distinctions 
within the Cataract (Class 0), Glaucoma (Class 2), and 
Normal (Class 3) categories, thereby fortifying its overall 
performance in real-world classification tasks. 

Lastly, the analysis of the confusion matrix for 
YOLOv8 in Figure 11 underscores a commendable level 
of accuracy, with a predominant alignment of predictions 
along the diagonal. Notably, the model achieved accurate 
predictions in 47 cases of Cataract, 57 instances of 
Diabetic Retinopathy, 71 occurrences of Glaucoma, and 31 
occurrences of Normal. Despite this impressive 
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performance, minor misclassifications were identified, 
notably a singular case of Cataract and Glaucoma wrongly 
predicted as Diabetic Retinopathy. These isolated 
misclassifications hint at areas where further refinement is 
warranted to enhance the model's capacity to effectively 
differentiate between closely related conditions. 
 

This evaluation affirms YOLOv8's overall 
efficacy in classification tasks, as evidenced by the 
majority of accurate predictions aligning with the 
respective classes. However, the identification of sporadic 
misclassifications underscores the continuous need for 
iterative improvements to fortify the model's precision and 
mitigate misclassification risks, particularly concerning 

nuanced distinctions between analogous conditions. 

Figure 11: Confusion matrix for YOLOv8 

 
In the final assessment of the three various deep 

learning models, namely, YOLOv5, YOLOv8, and 
VGG16, it is evident that YOLOv8 stands out as the most 
notable performer, showcasing an impressive accuracy of 
92.5%, precision of 88%, and recall of 87%. Particularly in 
the classification of glaucoma, with a striking accuracy of 
93%, YOLOv8 excels in identifying this crucial condition. 
The model also demonstrates robust performance in 
detecting diabetic retinopathy and cataracts, with 
accuracies of 84% in each case. This outstanding 
performance can be attributed to YOLOv8's advanced 
architecture, enabling accurate detection across multiple 
classes. 

 
Comparatively, YOLOv5 presents a competitive 

option with a decent accuracy of 63%, precision of 72%, 
and recall of 70%, although it falls short when 
benchmarked against YOLOv8. Similarly, VGG16, with a 
respectable accuracy of 78%, precision of 81%, and recall 
of 77%, trails behind the YOLO models, suggesting 
potential limitations in its architecture for medical image 
classification. Overall, the superior accuracy, precision, 
and recall values, combined with robust performance 

across various medical conditions, position YOLOv8 as 
the preferred choice among the evaluated models. 

 Figure 12: Mode’s accuracy comparison 

 
Furthermore, the graphical representation in 

Figure [12] underscores the accuracy comparison of 
YOLOv5, YOLOv8, and VGG16, with YOLOv8 
leading with an accuracy of around 90%, 
outperforming the other models. YOLOv5 lags with 
roughly 70% accuracy, while VGG16 shows 
moderate performance at about 80%. This reaffirms 
YOLOv8's effectiveness in medical image 
classification. 
 

Table 4: Model's accuracy table 

Model Recall Precision Accuracy 

YOLOv8 87% 88% 92% 

YOLOv5 70% 72% 63% 

VGG16 77% 81% 78% 

 
Table 4 presents a concise summary of the 

accuracy metrics for each model, emphasizing YOLOv8's 
strong performance with 92% accuracy, 88% precision, 
and 87% recall. In contrast, YOLOv5 and VGG16 exhibit 
lower accuracy levels, further highlighting the superiority 
of YOLOv8 in this context. 
 

 
6. Conclusion 

The aim of this study was to assess the 
effectiveness of deep learning models in classifying ocular 
diseases based on retinal images. We conducted a 
comparative analysis of the performance of the YOLOv8, 
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YOLOv5, and VGG16 models, with a specific focus on 
varying hyperparameter settings for VGG16. 

Our examination of the VGG16 training 
configurations underscored the importance of 
hyperparameter tuning, particularly the impact of the 
learning rate on achieving optimal accuracy. While further 
research into the effects of batch size is recommended, 
these findings provide valuable insights for future 
implementations of VGG16 in ocular disease classification 
tasks. 

Furthermore, the study highlights the clear 
superiority of YOLOv8 in this particular domain. It 
achieved an impressive accuracy of 92.5%, surpassing 
both YOLOv5 (63%) and VGG16 (78.80%) by a 
significant margin. Notably, YOLOv8 demonstrated 
exceptional performance in identifying critical conditions 
such as glaucoma (93% accuracy) and exhibited strong 
detection capabilities for diabetic retinopathy and cataracts 
(84% accuracy each). These findings suggest that 
YOLOv8's advanced architecture is well-suited for the 
complexities of medical image classification in ocular 
disease diagnosis. 

 
In summary, this study not only highlights the 

effectiveness of various deep-learning models in ocular 
disease classification but also sets the stage for future 
advancements in this field. YOLOv8's superior accuracy 
and robust performance across different ocular conditions 
position it as a promising tool for the development of a 
more comprehensive and accurate automated diagnosis 
system, ultimately leading to improved patient care. 
Subsequent research can explore the potential benefits of 
integrating these models and further refine hyperparameter 
optimization techniques to achieve even greater diagnostic 
accuracy. 
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