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Summary 
The numerical core of iterative algorithms is a matrix-vector 
multiplication (MVM) involving the large sparse matrix. In this 
work some issues related to effective parallel implementation of 
sparse MVM on PC clusters are discussed. Attention is focused 
on the interprocessor communications and compression step 
involved in TJDS-MVM. We present three different 
communication approaches for parallel implementation and 
evaluate the contributions on PC cluster. 
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1. Introduction 

Repeated matrix-vector multiplications (SpMxV) y = 
Ax that involve the same large, sparse, structurally 
symmetric or nonsymmetric square or rectangular matrix 
are kernel operations in various iterative solvers. Efficient 
parallelization of these solvers requires matrix A to be 
partitioned among the processors in such a way that 
communication overhead is kept low while maintaining 
computational load balance.  
 A network of PCs can be viewed as a distributed-
memory environment. However, the interprocessor 
communication overhead plays a much active role in the 
parallel implementation. The algorithm adopted in 
interprocessor communications determines the complexity 
of programming and the overall parallel performance, and 
therefore, the algorithm for interprocessor communication 
needs to be given more consideration when dealing with 
the parallel programming. 

This paper presents three different schemes for the 
communication and compression of matrix in Transposed 
Jagged diagonal storage (TJDS) format for parallel MVM 
on heterogeneous cluster [1, 2]. The three strategies are 
global compression, local compression and modified local 
compression. There are two main idea behind these 
schemes: one is whether the compression step involved 
TJDS format is performed before or after matrix 
distribution and other is overlapping of communication 
and computation steps. Experimental results obtained in a 
local network of heterogeneous computers are presented. 

The remaining paper is organized as follows: In 
Section 2 we briefly present the parallel implementation of 
matrix-vector multiplication using TJDS storage format. 

The Experimental results and performance analysis is 
presented in section 3. Finally, in Section 4 we give 
conclusions. 

2. Implementation of matrix-vector    
multiplication 

The efficiency of an algorithm for the solution of 
linear system is determined by the performance of matrix-
vector multiplication that depends heavily on the storage 
scheme used. In our previous work five storage formats 
including Coordinate Storage (COO), Compressed Row 
Storage (CRS), Compressed Column Storage (CCS), 
Jagged Diagonal Storage (JDS) and Transposed Jagged 
Diagonal Storage (TJDS) [2, 3, 4] were implemented and 
compared [5, 6]. The TJDS achieve the high performance 
on distributed memory parallel architecture. 

2.1 The transposed jagged diagonal storage (TJDS) 
format 

The Transposed Jagged Diagonal Storage (TJDS) 
format is inspired from the Jagged Diagonal Storage (JDS) 
format and makes no assumptions about the sparsity 
pattern of the matrix. To illustrate the principles of the 
scheme, we introduce a 8 x 8 matrix A with nonzero 
elements aij. 
 

 
In TJDS all the non-zero elements are shifted upward 

instead of leftward as in JDS. This gives a new matrix Accs. 
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A Transposed Jagged Diagonal Storage Atjds is 
obtained by reordering the columns of Accs in decreasing 
order from left to right according to the number of nonzero 
elements per column and reordering the elements of the 
vector x accordingly as if it were an additional row of A. 
 

 
 

The rows of the compressed and permuted matrix 
Atjds are called transposed jagged diagonals. Obviously, the 
number of these diagonals is equal to the maximum 
number max_nz of nonzeros per column. A suitable data 
structure required to compute Ax = y using TJDS scheme 
is shown in Figure 1.  The num_nz nonzero elements of the 
Atjds matrix are stored in a floating point linear array 
value(:), one row after another. Another array of same 
length row_ind(:), is needed to store the row indices of the 
non-zero elements in the original matrix. Finally, a third 
array of length max_nz+1 is also needed, tjd_ptr(:), which 
stores the starting position of the transposed jagged 
diagonals in the array value(:).  Figure 2 shows the matrix 
A considered above in the TJDS format. 

 
 
TJDS_Matrix  =  record 
          value       : array [1..num_nz] of REAL 
          row_ind  : array [1..num_nz] of INTEGER  
          tjd_ptr     : array [1..max_nz+1] of INTEGER 
         X              : array [1..n] of REAL 
         Y              : array [1..n] of REAL 
end record 

3. Parallel implementation 

To keep memory requirements as low as possible 
on multiprocessor systems with distributed memory, the 
matrix data is spread over the processors involved in 

computation. Matrix elements requiring access to vector 
data stored on remote processors (non-local vector 
elements) cause communication. Since the matrix does not 
change during computation, a static communication 
scheme is predetermined beforehand. In this way we can 
exchange data efficiently in anticipation of the overlapping 
of communication and computation in the MVM step. 
Three different techniques for this purpose are presented 
here.  

3.1 The Global compression scheme  

In the global compression scheme the matrix 
compression is performed before the matrix distribution. 
Fig. 1 shows the matrix A and vector X. All nonzero 
matrix elements are filled. Matrix elements causing 
communication are marked black and local matrix 
elements are colored red. Fig. 2 shows the matrix A with 
all the nonzero elements shifted upward. Fig. 3 shows 
Transposed Jagged Diagonal Storage obtained by 
reordering the columns of upward shifted matrix in 
decreasing order from left to right according to the number 
of nonzero elements per column and reordering the 
elements of the vector x accordingly as if it were an 
additional row of A. Fig. 4 illustrates the communication 
of vector elements in MVM. 

 
 

 
 

Fig. 1  The original matrix A and vector X. 
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Fig. 2  The upward compressed matrix. 

 

Fig. 3  The reordering of compressed matrix column and vector X. Also 
the distribution of TJDS-matrix and vector X on 4 processors (P0 – P3). 

 

Fig. 4  The communication scheme resulting from the data distribution of 
fig. 3 

3.2 The Local compression scheme 

The global compression involve a lot of 
communication volume, as shown in fig. 4, leading to 
perform the compression step by each processor. In the 
local compression scheme the matrix compression is 
performed locally after the matrix distribution [6]. Each 
processor transforms its local columns into the TJDS 
format as illustrated in fig. 6. The Jagged Diagonals can 
only be released for computation if the corresponding non-
local vector elements have successfully been received. Fig. 
7 shows the communication required during one MVM.  

 
 

 

Fig. 5  Distribution of a matrix A and vector X on 4 processors (P0 – P3). 

 

Fig. 6  Transformation of local columns of matrix in TJDS format. 
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Fig. 7  Communication scheme resulting from local compression 

3.3 Modified local compression with rearrangement          
 of local and non-local sub-blocks  

In principle the implementation of local compression 
scheme allows overlapping of communication and 
computation. At this point the parallel TJDS scheme as 
described above has one serious drawback: The processor-
local compression step might cause a strong mixture of 
local and non-local matrix elements when shifting the 
nonzero elements to the left. For instance, process P2 and 
P3 in fig. 6 requires at least one receive-operation to be 
completed before starting any computation when using the 
TJDS transformation in a straightforward way. For that 
reason we have slightly modified the parallel compression 
step as follows: 

a. Shift local matrix elements to upward only within 
the local sub-block on each processor. 

b. Fill each local sub-block with the non-local 
matrix elements from downward.  

If the diagonal of the matrix is full this algorithm generates 
at least one local Transposed Jagged Diagonal as can be 
seen in fig. 8 below. 

 

Fig. 8  Distribution of a matrix A and vector X as in figure 5 with 
modified TJDS compression step. 

 

Fig. 9  Communication scheme resulting from modified local 
compression 

During MVM, each matrix element has to find the 
matching vector element it is multiplied with by using the 
information of row indices. No permutation information is 
required during MVM as the vector is already permuted 
according to the matrix. It is apparent that a Transposed 
Jagged Diagonal can only be released for computation if 
the corresponding non-local elements have successfully 
been received. The parallel MVM implementation is based 
on MPI. The Transposed Jagged Diagonals are processed 
as a whole during MVM. 

4. Experimental results and performance 
analysis 

We have selected the sparse matrices from the Matrix-
Market [7] collection to evaluate the TJDS-MVM for 
different communication and compression schemes. 

 

Table 1. Selection of sparse matrices from matrix market 

 Matrix Dimension Nnze 
Max. 
Nnzec 

Max. 
Nnzer 

1 cry10000 10000x10000 49699 6 5 

2 bcsstk17 10974x10974 219812 150 150 

3 bcsstk18 11948x11948 80519 49 49 

4 bcsstk25 15439x15439 133840 59 59 

5 memplus 17758x17758 126150 353 353 

6 af23560 23560x23560 484256 21 21 
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For parallel computers with distributed memory, we 
use a column-wise distribution of matrix and row-wise 
distribution of vector elements among the processors. In 
the parallel MVM the current processor exchanges data 
with its neighbors and then computes the product locally. 
After completing local computation the contribution from 
all processors is summed up by using MPI_ALLREDUCE. 

4.1 Communication performance   

We have tested our implementation on cluster of 8 
PCs with 3.0 GHz processors running LINUX. Each 
processor is equipped with 1024 MB local memory. One 
of the machines is the master node and the others are slave 
nodes. The slave nodes have a cut down version of LINUX, 
which contains the bare minimum for the machine to 
operate in the cluster. The slaves and the master node are 
connected via a network (Ethernet 100 Mbps).  
Three different way are presented here for the 
communication and compression step for TJDS format. 
The main aim is to find the way by which we can 
exchange data efficiently in anticipation of the overlapping 
of communication and computation in the MVM step.  The 
timing results are shown in table 2. 
 

Table 2. Elapsed time of computation on cluster of PCs 

 
Matrix info P 

# 
Elapsed time (sec) in 

Matrix n cols nnz Sch1 Sch2 Sch3 

cry1000
0 

10000 5000 25000 2 2.158 2.096 2.065 
2500 12550 4 1.922 1.812 1.757 
1250 6325 8 1.192 1.054 0.985 

bcsstk17 10974 5487 118014 2 5.014 4.914 4.864 
2744 64266 4 3.221 3.077 3.005 
1372 32916 8 2.402 2.24 2.159 

bcsstk18 11948 5974 40899 2 3.192 3.082 3.027 
2987 21978 4 2.137 2.003 1.936 
1494 11514 8 1.895 1.731 1.649 

bcsstk25 15439 7720 66964 2 4.687 4.567 4.507 
3860 34087 4 3.212 3.068 2.996 
1930 17091 8 2.062 1.88 1.789 

memplus 17758 8879 71619 2 5.853 5.677 5.589 
4440 36131 4 3.416 3.348 3.314 
2220 22875 8 1.971 1.951 1.941 

af23560 23560 11780 242128 2 9.024 8.742 8.601 
5890 121506 4 5.698 5.472 5.359 
2945 60781 8 3.371 3.191 3.101 

 
  
The total runtimes for different interprocessor 

communication schemes with various numbers of 
processors and fixed problem size (for 1000 iterations) are 
presented in Fig. 10. 
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Fig. 10  Total runtime with different interprocessor communication 
schemes 

4. Conclusions 

This paper presents some issues related to 
interprocessor communication in parallelizing TJDS based 
sparse matrix-vector multiplication on a PC cluster. Three 
communication and compression schemes that have 
different programming complexities and different 
performances are presented. In the global compression 
scheme the matrix compression is performed before the 
matrix distribution. The global compression involves a lot 
of communication volume, leading to perform the 
compression step by each processor. In the local 
compression scheme the matrix compression is performed 
locally after the matrix distribution. But in this case the 
processor-local compression step might cause a strong 
mixture of local and non-local matrix elements when 
shifting the nonzero elements to the left. For this purpose 
the local compression scheme is slightly modified. So that 
the computation starts on every processor before the 
completion of first receive operation allowing maximum 
overlapping of communication and computation. The 
experimentation shows that the implementation of this 
modified approach obtains good results.  
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