
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

31

Manuscript received May 5, 2025
Manuscript revised May 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.5.4

Communication Schemes in Parallel Sparse Matrix-Vector
Multiplication on PC Cluster

Rukhsana Shahnaz and Anila Usman,

Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.

Summary
The numerical core of iterative algorithms is a matrix-vector
multiplication (MVM) involving the large sparse matrix. In this
work some issues related to effective parallel implementation of
sparse MVM on PC clusters are discussed. Attention is focused
on the interprocessor communications and compression step
involved in TJDS-MVM. We present three different
communication approaches for parallel implementation and
evaluate the contributions on PC cluster.
Keywords:
Interprocessor communication, Matrices distribution, matrix-vector
product, sparse storage formats, Cluster computing.

1. Introduction

Repeated matrix-vector multiplications (SpMxV) y =
Ax that involve the same large, sparse, structurally
symmetric or nonsymmetric square or rectangular matrix
are kernel operations in various iterative solvers. Efficient
parallelization of these solvers requires matrix A to be
partitioned among the processors in such a way that
communication overhead is kept low while maintaining
computational load balance.
 A network of PCs can be viewed as a distributed-
memory environment. However, the interprocessor
communication overhead plays a much active role in the
parallel implementation. The algorithm adopted in
interprocessor communications determines the complexity
of programming and the overall parallel performance, and
therefore, the algorithm for interprocessor communication
needs to be given more consideration when dealing with
the parallel programming.

This paper presents three different schemes for the
communication and compression of matrix in Transposed
Jagged diagonal storage (TJDS) format for parallel MVM
on heterogeneous cluster [1, 2]. The three strategies are
global compression, local compression and modified local
compression. There are two main idea behind these
schemes: one is whether the compression step involved
TJDS format is performed before or after matrix
distribution and other is overlapping of communication
and computation steps. Experimental results obtained in a
local network of heterogeneous computers are presented.

The remaining paper is organized as follows: In
Section 2 we briefly present the parallel implementation of
matrix-vector multiplication using TJDS storage format.

The Experimental results and performance analysis is
presented in section 3. Finally, in Section 4 we give
conclusions.

2. Implementation of matrix-vector
multiplication

The efficiency of an algorithm for the solution of
linear system is determined by the performance of matrix-
vector multiplication that depends heavily on the storage
scheme used. In our previous work five storage formats
including Coordinate Storage (COO), Compressed Row
Storage (CRS), Compressed Column Storage (CCS),
Jagged Diagonal Storage (JDS) and Transposed Jagged
Diagonal Storage (TJDS) [2, 3, 4] were implemented and
compared [5, 6]. The TJDS achieve the high performance
on distributed memory parallel architecture.

2.1 The transposed jagged diagonal storage (TJDS)
format

The Transposed Jagged Diagonal Storage (TJDS)
format is inspired from the Jagged Diagonal Storage (JDS)
format and makes no assumptions about the sparsity
pattern of the matrix. To illustrate the principles of the
scheme, we introduce a 8 x 8 matrix A with nonzero
elements aij.

In TJDS all the non-zero elements are shifted upward

instead of leftward as in JDS. This gives a new matrix Accs.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

32

A Transposed Jagged Diagonal Storage Atjds is
obtained by reordering the columns of Accs in decreasing
order from left to right according to the number of nonzero
elements per column and reordering the elements of the
vector x accordingly as if it were an additional row of A.

The rows of the compressed and permuted matrix
Atjds are called transposed jagged diagonals. Obviously, the
number of these diagonals is equal to the maximum
number max_nz of nonzeros per column. A suitable data
structure required to compute Ax = y using TJDS scheme
is shown in Figure 1. The num_nz nonzero elements of the
Atjds matrix are stored in a floating point linear array
value(:), one row after another. Another array of same
length row_ind(:), is needed to store the row indices of the
non-zero elements in the original matrix. Finally, a third
array of length max_nz+1 is also needed, tjd_ptr(:), which
stores the starting position of the transposed jagged
diagonals in the array value(:). Figure 2 shows the matrix
A considered above in the TJDS format.

TJDS_Matrix = record
 value : array [1..num_nz] of REAL
 row_ind : array [1..num_nz] of INTEGER
 tjd_ptr : array [1..max_nz+1] of INTEGER
 X : array [1..n] of REAL
 Y : array [1..n] of REAL
end record

3. Parallel implementation

To keep memory requirements as low as possible
on multiprocessor systems with distributed memory, the
matrix data is spread over the processors involved in

computation. Matrix elements requiring access to vector
data stored on remote processors (non-local vector
elements) cause communication. Since the matrix does not
change during computation, a static communication
scheme is predetermined beforehand. In this way we can
exchange data efficiently in anticipation of the overlapping
of communication and computation in the MVM step.
Three different techniques for this purpose are presented
here.

3.1 The Global compression scheme

In the global compression scheme the matrix
compression is performed before the matrix distribution.
Fig. 1 shows the matrix A and vector X. All nonzero
matrix elements are filled. Matrix elements causing
communication are marked black and local matrix
elements are colored red. Fig. 2 shows the matrix A with
all the nonzero elements shifted upward. Fig. 3 shows
Transposed Jagged Diagonal Storage obtained by
reordering the columns of upward shifted matrix in
decreasing order from left to right according to the number
of nonzero elements per column and reordering the
elements of the vector x accordingly as if it were an
additional row of A. Fig. 4 illustrates the communication
of vector elements in MVM.

Fig. 1 The original matrix A and vector X.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

33

Fig. 2 The upward compressed matrix.

Fig. 3 The reordering of compressed matrix column and vector X. Also
the distribution of TJDS-matrix and vector X on 4 processors (P0 – P3).

Fig. 4 The communication scheme resulting from the data distribution of
fig. 3

3.2 The Local compression scheme

The global compression involve a lot of
communication volume, as shown in fig. 4, leading to
perform the compression step by each processor. In the
local compression scheme the matrix compression is
performed locally after the matrix distribution [6]. Each
processor transforms its local columns into the TJDS
format as illustrated in fig. 6. The Jagged Diagonals can
only be released for computation if the corresponding non-
local vector elements have successfully been received. Fig.
7 shows the communication required during one MVM.

Fig. 5 Distribution of a matrix A and vector X on 4 processors (P0 – P3).

Fig. 6 Transformation of local columns of matrix in TJDS format.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

34

Fig. 7 Communication scheme resulting from local compression

3.3 Modified local compression with rearrangement
 of local and non-local sub-blocks

In principle the implementation of local compression
scheme allows overlapping of communication and
computation. At this point the parallel TJDS scheme as
described above has one serious drawback: The processor-
local compression step might cause a strong mixture of
local and non-local matrix elements when shifting the
nonzero elements to the left. For instance, process P2 and
P3 in fig. 6 requires at least one receive-operation to be
completed before starting any computation when using the
TJDS transformation in a straightforward way. For that
reason we have slightly modified the parallel compression
step as follows:

a. Shift local matrix elements to upward only within
the local sub-block on each processor.

b. Fill each local sub-block with the non-local
matrix elements from downward.

If the diagonal of the matrix is full this algorithm generates
at least one local Transposed Jagged Diagonal as can be
seen in fig. 8 below.

Fig. 8 Distribution of a matrix A and vector X as in figure 5 with
modified TJDS compression step.

Fig. 9 Communication scheme resulting from modified local
compression

During MVM, each matrix element has to find the
matching vector element it is multiplied with by using the
information of row indices. No permutation information is
required during MVM as the vector is already permuted
according to the matrix. It is apparent that a Transposed
Jagged Diagonal can only be released for computation if
the corresponding non-local elements have successfully
been received. The parallel MVM implementation is based
on MPI. The Transposed Jagged Diagonals are processed
as a whole during MVM.

4. Experimental results and performance
analysis

We have selected the sparse matrices from the Matrix-
Market [7] collection to evaluate the TJDS-MVM for
different communication and compression schemes.

Table 1. Selection of sparse matrices from matrix market

 Matrix Dimension Nnze
Max.
Nnzec

Max.
Nnzer

1 cry10000 10000x10000 49699 6 5

2 bcsstk17 10974x10974 219812 150 150

3 bcsstk18 11948x11948 80519 49 49

4 bcsstk25 15439x15439 133840 59 59

5 memplus 17758x17758 126150 353 353

6 af23560 23560x23560 484256 21 21

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

35

For parallel computers with distributed memory, we
use a column-wise distribution of matrix and row-wise
distribution of vector elements among the processors. In
the parallel MVM the current processor exchanges data
with its neighbors and then computes the product locally.
After completing local computation the contribution from
all processors is summed up by using MPI_ALLREDUCE.

4.1 Communication performance

We have tested our implementation on cluster of 8
PCs with 3.0 GHz processors running LINUX. Each
processor is equipped with 1024 MB local memory. One
of the machines is the master node and the others are slave
nodes. The slave nodes have a cut down version of LINUX,
which contains the bare minimum for the machine to
operate in the cluster. The slaves and the master node are
connected via a network (Ethernet 100 Mbps).
Three different way are presented here for the
communication and compression step for TJDS format.
The main aim is to find the way by which we can
exchange data efficiently in anticipation of the overlapping
of communication and computation in the MVM step. The
timing results are shown in table 2.

Table 2. Elapsed time of computation on cluster of PCs

Matrix info P

Elapsed time (sec) in

Matrix n cols nnz Sch1 Sch2 Sch3

cry1000
0

10000 5000 25000 2 2.158 2.096 2.065
2500 12550 4 1.922 1.812 1.757
1250 6325 8 1.192 1.054 0.985

bcsstk17 10974 5487 118014 2 5.014 4.914 4.864
2744 64266 4 3.221 3.077 3.005
1372 32916 8 2.402 2.24 2.159

bcsstk18 11948 5974 40899 2 3.192 3.082 3.027
2987 21978 4 2.137 2.003 1.936
1494 11514 8 1.895 1.731 1.649

bcsstk25 15439 7720 66964 2 4.687 4.567 4.507
3860 34087 4 3.212 3.068 2.996
1930 17091 8 2.062 1.88 1.789

memplus 17758 8879 71619 2 5.853 5.677 5.589
4440 36131 4 3.416 3.348 3.314
2220 22875 8 1.971 1.951 1.941

af23560 23560 11780 242128 2 9.024 8.742 8.601
5890 121506 4 5.698 5.472 5.359
2945 60781 8 3.371 3.191 3.101

The total runtimes for different interprocessor

communication schemes with various numbers of
processors and fixed problem size (for 1000 iterations) are
presented in Fig. 10.

0

2000

4000

6000

8000

10000

12000

14000

2 4 8

T
o

ta
l R

u
n

ti
m

e
(s

ec
)

Number of Processors

 Scheme 1
 Scheme 2
 Scheme 3

Fig. 10 Total runtime with different interprocessor communication
schemes

4. Conclusions

This paper presents some issues related to
interprocessor communication in parallelizing TJDS based
sparse matrix-vector multiplication on a PC cluster. Three
communication and compression schemes that have
different programming complexities and different
performances are presented. In the global compression
scheme the matrix compression is performed before the
matrix distribution. The global compression involves a lot
of communication volume, leading to perform the
compression step by each processor. In the local
compression scheme the matrix compression is performed
locally after the matrix distribution. But in this case the
processor-local compression step might cause a strong
mixture of local and non-local matrix elements when
shifting the nonzero elements to the left. For this purpose
the local compression scheme is slightly modified. So that
the computation starts on every processor before the
completion of first receive operation allowing maximum
overlapping of communication and computation. The
experimentation shows that the implementation of this
modified approach obtains good results.

References
[1] Arnold L. Rosenberg, Sharing Partitionable Workloads in

Heterogeneous NOWs: Greedier Is Not Better, cluster, 3rd
IEEE International Conference on Cluster Computing
(CLUSTER'01), 2001, pp. 124.

[2] R. Barrett et al., Templates for the solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM Press,
Philadelphia, 1994.

[3] E. Montagne and Anand Ekambaram, An Optimal Storage
Format for Sparse Matrices, Information Processing Letters,

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

36

Elsevier Science Publishers, Volume 90, Issue 2, April 2004,
pp. 87-92.

[4] A. Ekambaram and E. Montagne, An Alternative
Compressed Storage Format for Sparse Matrices, ISCIS
XVIII - Eighteenth International Symposium on Computer
and Information Sciences, LNCS 2869, November 2003, pp.
196-203.

[5] Rukhsana Shahnaz, Anila Usman, Implementation and
Evaluation of Sparse Matrix-Vector Product on Distributed
Memory Parallel Computers, Proc. Cluster2006, IEEE
International Conference on Cluster Computing, Barcelona,
2006.

[6] Rukhsana Shahnaz, Anila Usman, An efficient sparse
matrix-vector multiplication on distributed memory parallel
computers, IJCSNS, International Journal of Computer
Science and Network Security, Vol.7, No.1, January 2007,
pp. 77-82.

[7] Matrix Market. http://math.nist.gov/MatrixMarket.

