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Abstract 
Agriculture is often affected by the spread of diseases and pests, 
which can cause significant economic losses. Worldwide, pests 
can cause yield losses of up to 40%. To minimize these losses, it 
is crucial to detect and identify pests as early as possible. Prior 
studies have developed detection models to either detect harmful 
insects or only harmless insects. However, there has been no 
model developed to detect both categories together. To address 
this issue, we aim to develop a model that can detect and classify 
both harmful and harmless insects in agricultural environments. 
We will assess the accuracy of three different methods: YOLO 
(You Only Look Once) versions 8 and 9, and VGG16 (Visual 
Geometry Group) on a dataset comprising ten classes, five for 
harmful insects and five for harmless insects, to determine the 
most effective approach. The results indicate that YOLOv9 
achieved the highest accuracy of 0.972, followed closely by 
YOLOv8 with 0.969, while VGG16 lagged at 0.849. This 
suggests that YOLOv9 is the most effective tool among the 
tested models for detecting and classifying both harmful and 
harmless insects in agricultural settings. 
Keywords: 
YOLO, VGG-16, Insects, harmful, harmless 
 
 
1. Introduction 

 
In agricultural fields, insects can play both positive 

and negative roles. Some insects, like bees and butterflies, 
help pollinate crops, while others, such as the gypsy moth, 
codling moth, and diamondback moth, can cause 
significant damage to crops worldwide. These insects lay 
numerous eggs, and their larvae feed heavily, leading to 
direct defoliation, which can result in substantial crop 
yield losses [1]. It's important to be able to identify these 
insects accurately for effective farm management and to 
maintain a healthy ecosystem. In the past, farmers and 
entomologists had to rely on manual identification, which 
was time-consuming and often prone to errors due to the 
large number of insect species. 
 

The world of Artificial Intelligence (AI) has made 
significant advancements in machine learning technologies, 
which have transformed the way we solve problems. One 
of the major challenges in the field of pest detection has 
been addressed by the use of image recognition powered 
by advanced convolutional neural networks (CNNs). This 
paper aims to compare three state-of-the-art AI models– 
YOLOv8, YOLOv9, and VGG16–that offer automated 
insect classification. Each model has a unique approach to 
image processing and learning capabilities, making them 
ideal candidates for a thorough comparative analysis. 
 

YOLO is a state-of-the-art object detection algorithm 
that is currently the most advanced of its kind. This 
revolutionary CNN excels at identifying objects with 
remarkable accuracy and speed in real-time [2]. VGG16 is 
a well-known convolutional neural network utilized for 
object classification and image recognition. This model 
effectively interprets intricate image features through its 
16 convolutional and fully connected layers [3].  
 

This research aims to address the increasing demand 
from the agricultural industry for technologies that 
enhance crop yields while promoting sustainable farming 
practices. Specifically, the study evaluates the 
performance of three AI models in recognizing different 
insect species. The goal is to identify the most effective 
model for practical deployment in fields worldwide. The 
research problem involves assessing the accuracy of these 
models in real-world conditions, which is both crucial and 
challenging. 
 

This paper provides insights and clarity on how AI 
can be applied to insect detection in agriculture. The paper 
starts with an extensive review of existing research on the 
subject, which includes the evolution of technologies and 
their adoption in agriculture. The paper then discusses the 
data collection method. The research methodology is then 
outlined, covering the dataset used and model training. In 
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the results and discussion section, a detailed analysis of 
each model's performance is presented. Finally, the paper 
concludes with recommendations for future research 
directions and potential enhancements in AI-driven pest 
management solutions. 
 
 
2. Literature Review 

 
In this section, we will review the literature related to 

detection models for identifying harmful or harmless 
insects. The research has been arranged from newest to 
oldest, starting from 2023 to 2018. 
 

Firstly, in the study "Optimisation of Residual 
Network Using Data Augmentation and Ensemble Deep 
Learning for Butterfly Image Classification" by Diniati 
Ruaika et al. [4], the authors aim to enhance the accuracy 
of the ResNet50 model by employing data augmentation 
and ensemble deep learning techniques specifically for 
butterfly image classification. Utilizing a public dataset 
from Kaggle, which includes 75 distinct butterfly species, 
the researchers integrated ResNet50 with a CNN to 
develop an ensemble deep-learning model. The 
effectiveness of the ResNet50 optimization was evaluated 
by comparing the experimental results from the original 
dataset with those obtained through the proposed methods, 
using various evaluation metrics. The study concluded that 
the proposed approach significantly improved performance, 
achieving an accuracy of 95%. 
 

Moving on, Kumar et al. [5] focused on developing 
YOLO-based deep learning models for accurate insect 
detection and classification, particularly targeting insect 
pests. The study involved collecting a public insect image 
dataset, annotating and augmenting the data, and training 
the YOLOv5 object recognition model. The YOLOv5x 
model achieved a mean average precision (mAP) of 93% 
and an F1 score close to 0.90, outperforming other 
YOLOv5-based models. The authors suggested future 
improvements, including combining MobileNet with 
YOLOv5x to enhance detection speed and optimize the 
system for real-time applications in computational 
entomology. 
 

Furthermore, in a paper by Sorbelli et al. [6], use 
of innovative technologies such as RGB cameras, drones, 
and computer vision algorithms to monitor pests in 
orchards, specifically Heliomorpha hallis (HH), also 
known as the “ornate brown stink bug.” Vision models 
were trained on high-quality images from a public dataset. 
Images captured by a drone were analyzed, taking into 
account factors such as noise and brightness, to improve 
the performance of machine learning algorithms. The 
results of the paper indicate that the machine learning 

models demonstrated satisfactory performance in 
identifying HH, with the YOLO framework proving 
particularly effective. 
 

Moreover, in a study conducted by Stark et al. [7], 
AI algorithms were developed to recognize flower-visiting 
arthropods, which have the potential to revolutionize 
pollinator monitoring. The study used a methodology that 
involved training YOLO models such as YOLOv5nano, 
YOLOv5small, and YOLOv7tiny on over 17,000 
annotated images. The models were tested on eight groups 
of flower-visiting arthropods. The results demonstrated 
that all three YOLO models achieved high accuracy, 
ranging from 93% to 97%. The study also highlighted the 
need for further research to improve the models' 
performance in scenarios where images have multiple 
overlapping individuals, varying lighting conditions, and 
different arthropod species with similar appearances.  
 

Meanwhile, in a study conducted by Anwar and 
Masood [8], an ensemble-based model was developed 
using transfer learning, and experiments were conducted 
with pre-trained models such as VGG16, VGG19, and 
ResNetv50. An accuracy of 82.5% was achieved, 
representing a significant improvement over recent state-
of-the-art models. The paper suggested using object 
detection algorithms like YOLO and Faster RCNN, as well 
as exploring other optimization techniques, parameters, 
and CNN models to improve performance due to the 
dataset's large number of classes and variable sample 
distribution. 
 

Furthermore, The study conducted by Wen et al. 
[9] The study presents Pest-YOLO, a model that utilizes 
RGB cameras, drones, and computer vision to detect dense 
and small agricultural pests. The work addresses the issue 
of effectively monitoring crop pests by enhancing previous 
methods with a modified YOLO framework. This 
framework incorporates an improved loss function and a 
unique bounding box selection algorithm. When evaluated 
on the comprehensive Pest24 dataset, Pest-YOLO 
surpasses other models, reaching a mean average precision 
of 69.59% and a mean recall of 77.71%. This demonstrates 
its exceptional capacity in practical agricultural 
environments, offering significant progress in automated 
pest control. Further study is needed to enhance the 
model's versatility and its precision in detection. 
 

Additionally, Thenmozhi Kasinathan et al. [10] 
explored automating crop pest detection using machine 
learning. Traditional methods required trained taxonomists, 
but the study applied artificial neural networks (ANN), 
support vector machines (SVM), k-nearest neighbors 
(KNN), naive bayes (NB), and convolutional neural 
network (CNN) models to classify insects. Results showed 
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CNN achieving the highest accuracy of 91.5% and 90% 
for nine and 24-class datasets, respectively. An insect pest 
detection algorithm, utilizing image processing, accurately 
identified insects amidst complex backgrounds in field 
crops. The study underscored the significance of efficient 
pest detection to mitigate crop damage and enhance 
productivity, with future research aiming to integrate the 
algorithm into deep Convolutional Neural Network (CNN) 
models for larger datasets. 
 

In the same context, Marković et al. [11] 
introduced a novel approach for predicting pest insect 
appearance utilizing sensors and machine learning 
algorithms. Their model aimed to aid farmers in the timely 
detection and control of pest insects, thus mitigating yield 
loss. By analyzing environmental parameters like 
temperature and relative humidity, the model predicted 
insect occurrences on a daily basis. They employed 
various machine learning algorithms, achieving up to 86.3% 
accuracy in predicting insect appearance over five days. 
The study highlighted the importance of early detection for 
effective pest management in agriculture, demonstrating 
the potential of machine learning in precision agriculture 
applications. 
 

Additionally, in a study by Homchan et al. [12], a 
machine learning model was developed using the Google 
Teachable Machine (GTM) tool to classify two 
economically important cricket species, Acheta 
domesticus and Gryllus bimaculatus, and determine their 
sex. The experimental investigation used pre-processed 
still images extracted from high-resolution videos. The 
training dataset comprised 2247 images, while 399 images 
were used to test the trained model. The results show that 
the trained ML model achieved a prediction accuracy of 
100%. Future improvements may include expanding the 
model to encompass a broader range of insect species and 
enhancing the ML-driven system for automated and online 
applications. 
 

Furthermore, AI et al. [13] explored how to use 
technology to automate the recognition of crop diseases. 
They used a model called Inception-ResNet-v2 to train a 
computer program to identify 27 types of disease in 10 
different crops. The images used in the study were from 
the AI Challenger Competition held in 2018. The results 
showed that the computer program was able to recognize 
crop diseases with an 86.1% accuracy rate, proving that it 
was effective. The researchers also created a WeChat 
applet, which farmers can use to identify crop diseases and 
pests in real time. The computer program showed better 
accuracy and performance compared to traditional deep 
learning models and could even identify specific ailments 
like corn leaf rust. This makes it a useful tool for pest 
management in agriculture. The researchers suggested that 

this hybrid network model is a promising way to detect 
plant diseases and insect pests more effectively than 
traditional models. Future research should focus on 
expanding the dataset to include more crop species and 
diseases and improving the model's accuracy and 
performance to help farmers manage crop diseases and 
pests more efficiently. 
 

Finally, Deng et al. [14] introduced a state-of-the-
art technique utilizing saliency maps, inspired by the 
human visual system, to swiftly and accurately identify 
objects of interest. Their study targeted ten categories of 
insect pests affecting tea plants, each category comprising 
approximately 40- 70 sample images sourced from various 
repositories and showcasing diverse conditions. The 
method integrates several models and methods, including 
SUN for saliency maps, an extended HMAX model with 
SIFT and NNSC for feature extraction, an LCP algorithm 
for texture features, and SVM for recognition. Results 
indicate an impressive accuracy rate of 85.5%, surpassing 
existing methods in recognition and processing time. This 
pioneering approach holds promise for practical 
deployment in agricultural pest management, contributing 
to sustainable farming practices and environmental 
conservation. 
 

Automated pest detection and management in 
agriculture have advanced with the use of machine 
learning and deep learning techniques. However, 
significant gaps remain that need to be addressed for 
improved efficacy. Notably, while many studies utilize 
YOLO-based models for pest detection, none have 
explored the latest YOLOv8 and YOLOv9 versions, which 
promise enhanced accuracy, speed, and efficiency. 
Investigating these versions' effectiveness compared to 
previous iterations is essential. Additionally, existing 
models largely fail to differentiate between harmful and 
beneficial pests. This distinction is crucial for targeted pest 
management and minimizing crop damage. Therefore, we 
propose to develop a model using YOLOv8, YOLOv9, 
and VGG16 to effectively classify pests based on their 
impact on crop health. 
 
3. Data Collection 

 
We collected a dataset comprising ten categories of 

insects frequently encountered in agricultural 
environments. This dataset was sourced from Kaggle. The 
complete dataset can be accessed in the designated drive 
folder [15]. The categories are as follows: 
 
Harmful Insects: 
 

● Marmorated Stink Bugs 
● Colorado Potato Beetles 
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● Fall Armyworms 
● Western Corn Rootworms 
● Thrips 

 
Harmless Insects: 

● Bees 
● Beetles 
● Cicadas 
● Dragonflies 
● Grasshoppers 

 
Each category consists of 100 images, resulting in a 

total of 1,000 images in the dataset. The dataset is divided 
into training, validation, and testing sets with proportions 
of 80%, 10%, and 10%.This allocation results in 800 
images for training, 100 images for validation, and 100 
images for testing. 
 
4. Methodology 

 
A. Yolo Algorithms 
       The acronym "YOLO" stands for "You Only Look 
Once" and is a widely recognized object detection system 
in the field of computer vision due to its exceptional 
capabilities [16]. Unlike conventional methods that 
repeatedly apply detection models across different regions 
and scales, YOLO integrates the entire detection process 
into a single neural network that simultaneously predicts 
multiple bounding boxes and class probabilities. YOLO 
frames object detection as a single regression problem, 
directly from image pixels to bounding box coordinates 
and class probabilities. This unique approach allows 
YOLO to effectively utilize global image context, 
enhancing its ability to distinguish foreground objects 
from background noise and deliver highly accurate 
predictions swiftly, as YOLO makes less than half the 
number of background errors compared to Fast R-CNN 
[17]. This feature is particularly beneficial for real-time 
applications such as video surveillance and autonomous 
driving. The system's architecture combines convolutional 
layers for both detection and classification and is trained 
on extensive datasets like PASCAL VOC and COCO, 
enhancing its generalization across various scenes. With 
its focus on speed and accuracy, YOLO has undergone 
several refinements to improve its performance and 
efficiency, making it a vital tool in both academic research 
and practical applications in object detection. 
 
1. YOLOv9  

The YOLOv9 represents the newest iteration of 
the YOLO, delivering exceptional real-time object 
detection performance. This version, developed by 
combining PGI and GELAN, has demonstrated remarkable 
competitiveness. Its superior design enables the deep 
model to reduce the parameter count by 49% and the 

computational workload by 43% compared to YOLOv8, 
while still achieving a 0.6% AP improvement on the MS 
COCO dataset [18]. 
 
2.  YOLOv8  

YOLOv8 is another model in the YOLO series 
for object detection, which precedes YOLOv9. It was 
unveiled in 2023 and maintains the fundamental 
architecture of its predecessors while incorporating 
numerous advancements. These enhancements include a 
new neural network structure that combines the Feature 
Pyramid Network (FPN) and the Path Aggregation 
Network (PAN). Additionally, YOLOv8 introduces an 
overhauled labeling tool aimed at streamlining the 
annotation process. This tool offers various advantageous 
features, such as automatic labeling, shortcut keys for 
labeling, and customizable hotkeys, all of which contribute 
to a more efficient method of labeling images for model 
training [19]. 

 
 
B. VGG-16  

The VGG-16 model is widely celebrated for its 
outstanding performance in computer vision applications, 
especially in the areas of image classification and object 
recognition. This advanced convolutional neural network 
is predominantly utilized for the purpose of image 
categorization. It is composed of numerous convolutional 
layers, each followed by pooling layers, which 
progressively increase in complexity. This architecture 
ultimately leads to fully connected layers responsible for 
the final classification process. Generally, the final layer of 
the VGG-16 model utilizes a SoftMax activation function, 
allowing it to effectively categorize images into distinct 
classes, such as different disease stages. VGG-16 is widely 
known for its outstanding performance in computer vision 
tasks, especially in image classification and object 
recognition. This deep convolutional neural network is 
mainly used for categorizing images. 
 
C. Training Methodology 

The purpose of this study is to compare previous 
research findings with new discoveries related to the 
identification of beneficial and harmful insects on farms 
using the You Only Look Once (YOLO) and VGG-16 
object recognition algorithms. The study evaluates the 
effectiveness of the Yolo8l, Yolov9-e, and VGG-16 
models, which were trained on a dataset of 1000 images 
distributed across 10 classes, with each class containing 
100 images. The models were trained using different 
hyperparameters, including epochs ranging from 40 to 100 
and batch sizes of 8 for yolov8 and yolov9, and 10 for 
VGG-16. 
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Table 1. The models at different hyperparameters 
 

Model Hyperparameters Value 

 
Yolov8l 

Epochs 40-100 

Batch size 8 

 
Yolov9-e 

Epochs 40-100 

Batch size 8 

 
VGG-16 

Epochs 35-40 

Batch size 10 

 
 
D. Training Environment  

In order to effectively train our models, we have opted 
to utilize Google Colab for running our Python code. This 
decision enables us to leverage advanced computational 
capabilities, including GPUs, to meet the specific training 
demands of both the YOLO and VGG-16 models. 
 

4.  Results and Discussion 

In this section, we analyze and compare the 
performance of three advanced models (YOLOv8, 
YOLOv9, and VGG-16) based on accuracy, precision, 
recall, and F1-score across different insect classes. 
 
A. YOLO Object Detection and Classification 

 
Table 2.  YOLOv8 accuracy over epochs 

 

 
Based on Table 2, we tested the YOLOv8 model 

over various epochs and observed that it achieved 
accuracies of 81%, 80%, 83%, and 81% for epochs 40, 50, 
70, and 100, respectively. The highest accuracy was found 
at epoch 70, which was 83%. We will now proceed to 
calculate the precision, recall, and F1-score for this epoch 
to further evaluate the model's performance. 

We use standardized formulas to measure the performance 
of our YOLO detection models. These metrics are 
calculated based on values from the confusion matrix:  
 

● Accuracy : (TP+TN)/(TP+TN+FP+FN) 

● Precision: TP/(TP+FP) 

● Recall: TP/(TP+FN) 

● F1 Score: 2 * (precision * recall) / (precision + 

recall) [20].  

 
     These calculations help us effectively evaluate the 
performance of our predictive models in distinguishing 
between different classes. 
 
Table 3. Accuracy, precision, recall, and F1-score for each class 

for Yolov8 at epoch 70 
 

 

Table 3 provides a detailed analysis of the 
performance of the YOLOv8 model at epoch 70. It 
includes accuracy, precision, recall, and F1-scores for 
different insect classes. The model achieves an overall 
accuracy of 96.89%, calculated by averaging the 
accuracies for each class as shown in Table 2. Beetles and 

Model Epochs  Accuracy 

 
 
 

YOLOv8 

40 0.81 

50 0.80 

70 0.83 

100 0.81 

 Accuracy  Precisio
n 

 Recall F1-score 

Bees 0.975 0.884 0.84 0.862 

Beetles 0.986 0.905 0.95 0.927 

Cicada 0.969 0.816 0.848 0.832 

Dragonfly 0.973 0.832 0.881 0.856 

Grasshopper 0.956 0.732 0.82 0.774 

Brown 
Marmorated 
Stink Bugs 

0.983 0.977 0.842 0.904 

Fall 
Armyworms 

0.937 0.746 0.47 0.577 

Colorado 
Potato Beetles 

0.973 0.918 0.78 0.843 

Thrips 0.977 0.850 0.91 0.879 

Western Corn 
Rootworms 

0.960 0.818 0.72 0.766 
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Brown Marmorated Stink Bugs stand out with high F1-
scores of 0.927 and 0.904, respectively, demonstrating the 
model’s strong identification capabilities. Cicadas and 
Dragonflies also perform well with F1-scores of 0.832 and 
0.856, highlighting the model's effectiveness. However, 
there are challenges in consistently detecting Fall 
Armyworms, with a notably low recall of 0.47 and the 
lowest F1-score of 0.577. Grasshoppers and Thrips show 
moderate performance with F1-scores of 0.774 and 0.879, 
indicating areas for improvement. The evaluation also 
includes Colorado Potato Beetles and Western Corn 
Rootworms, with F1-scores of 0.843 and 0.766, providing 
a comprehensive assessment of the model’s capabilities at 
this epoch. 

 

Figure 1. Training and Validation Losses of  YOLOv8 Model 

Table 4.  YOLOv9 accuracy over epochs 

 
Figure 1 illustrates the YOLOv8 model's training 

and validation loss curves and performance metrics. The 
curves show a consistent decline in various losses over 
epochs, indicating effective learning and optimization. The 
precision, recall, and mean Average Precision (mAP) 
metrics display increasing trends across different IoU 
thresholds. These improvements directly correlate with 

enhanced detection capabilities and precision in 
classification. This visualization encapsulates the model's 
learning progress, demonstrating its advancing ability to 
generalize unseen data effectively. 
 
 

 

Figure 2. Testing sample of  YOLOv8 Model 

 
Moving from YOLOv8 to YOLOv9, we observe an 

improved performance profile. In Table 4, we have 
documented the performance of the YOLOv9 model 
across different epochs. The model demonstrated 
accuracies of 85%, 86%, 83%, and 88% at epochs 40, 50, 
70, and 100, respectively. Notably, the epoch 100 showed 
the highest accuracy, reaching 88%. Following this 
observation, we will next assess the precision, recall, and 
F1-score corresponding to this optimal epoch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model Epochs  Accuracy 

YOLOv9 40 0.85 

50 0.86 

70 0.83 

100 0.88 
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Table 5. Accuracy, precision, recall, and F1-score for each class 
for yolov9 

 

 

Figure 3. Training and Validation Losses of  YOLOv9 Model 

 
Figure 4. Testing sample of  YOLOv9 Model 

        The YOLOv9 model has demonstrated impressive 
effectiveness in automatically recognizing insects, as 
shown in Table 4. However, its performance varies across 
different insect types. Bees and Cicadas have achieved 
outstanding precision, recall, and F1-scores, all at 0.95, 
indicating highly accurate detection capabilities. Brown 
Marmorated Stink Bugs are particularly impressive, 
achieving a perfect precision of 1.0 and an F1-score of 
0.914, reflecting exceptional detection precision. 
Challenges arise with Western Corn Rootworms and Fall 
Armyworms, with lower F1-scores of 0.621 and 0.743, 
respectively, suggesting difficulties in consistent detection. 
Thrips show moderate performance with an F1-score of 
0.826, indicating areas for potential improvement. Overall, 
the model maintains a strong accuracy of 97.24%, 
calculated from the average of individual accuracies for 
each class as detailed in Table 4. While the model shows 
strong overall accuracy, further refinement in precision 
and recall is needed for certain challenging categories to 
optimize pest management strategies in agriculture. 
Figure 3 shows the YOLOv9 model's training and 
validation loss curves and performance metrics, providing 
insights into the model's learning dynamics over epochs. 
The graphs illustrate consistent improvement in bounding 
box predictions, object classification, and attribute 
estimation. Validation loss curves show some fluctuations 
but indicate good generalization. Performance metrics 
confirm increasing accuracy and robustness in object 
detection tasks. 
 
 
 

 Accuracy  Precision  Recall F1-score 

Bees 0.991 0.95 0.95 0.95 

Beetles 0.972 0.817 0.89 0.852 

Cicada 0.991 0.95 0.95 0.95 

Dragonfly 0.980 0.899 0.881 0.890 

Grasshopper 0.966 0.779 0.88 0.826 

Brown 
Marmorated 
Stink Bugs 

0.985 1.0 0.842 0.914 

Fall 
Armyworms 

0.959 0.867 0.65 0.743 

Colorado Potato 
Beetles 

0.972 0.856 0.83 0.843 

Thrips 0.968 0.822 0.83 0.826 

Western Corn 
Rootworms 

0.940 0.764 0.524 0.621 
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B. VGG-16 Neural Network Model 
 
After discussing the impressive performance of the 
YOLOv9 model, it is important to compare it with the 
VGG-16 model. While it is a well-established model for 
classical image processing tasks, it may not be as effective 
in this particular application. 
We utilized the previously mentioned formulas to assess 
the performance of the VGG-16 classification model in 
Table 6 [20]. 
 
 
Table 6. Accuracy, precision, recall, and F1-score for each class 

for VGG-16 
 

 
 
The performance of the VGG-16 model was 

evaluated in terms of accuracy, precision, recall, and F1-
score, and the results are presented in Table 6. The 
accuracy of bees was high at 87.5%, but their precision 
and recall were low, which led to a F1-score of 24.2%. 
Beetles and Colorado Potato Beetles showed similar 
effectiveness, each with accuracies around 83% and F1-
scores of 29.2%.  

 
Cicadas were the most challenging to recognize with the 
lowest metrics, including an accuracy of 80.7% and F1-

score of 17%. Dragonflies achieved an accuracy of 88.5%, 
but their recall was disappointing at 15%, resulting in an 
F1 score of 20.7%. Grasshoppers and Brown Marmorated 
Stink Bugs were poorly recognized, with minimal F1-
scores of 10.5% and 12.5%, respectively. Fall Armyworms 
and Thrips showed moderate performance with accuracies 
around 86% and required improvements in precision and 
recall. Western Corn Rootworms, on the other hand, 
excelled with the highest recall of 55% and F1-score of 
40.7%, indicating effective identification.   

Figure 5. Training Accuracy of  VGG-16  Model 
 

 
Moreover, Figure 5 shows the training 

progression of the model and aligns with these findings, 
exhibiting an initial low accuracy that significantly 
improves after the 20th epoch, indicating the model's 
enhanced ability to generalize and recognize features more 
effectively with continued training. This figure 
demonstrates how the model's learning curve correlates 
with the observed metrics, where certain insects like 
Western Corn Rootworms show distinct improvement in 
later training phases. 
 

C. Overall Comparison  

Table 7.  YOLOv8, YOLOv9, and VGG-16 accuracy 

 
Based on the evaluation of three models, it is 

clear that the YOLOv9 model outperforms the other two, 
as shown in Table 7. The YOLOv9 model has consistently 
high metrics across various insect classes, which 
demonstrates its superiority. It has particularly impressive 
achievements in terms of precision, recall, and F1 scores 
for classes such as Bees and Cicadas, where it reaches 
metrics close to perfection. The model has also shown 

 Accuracy Precision Recall F1-score 

Bees 0.875 0.308 0.2 0.242 

Beetles 0.839 0.25 0.35 0.292 

Cicada 0.807 0.148 0.2 0.170 

Dragonfly 0.885 0.333 0.15 0.207 

Grasshopper 0.820 0.111 0.1 0.105 

Brown 
Marmorated 
Stink Bugs 

0.86 0.167 0.1 0.125 

Fall 
Armyworms 

0.863 0.294 0.25 0.270 

Colorado 
Potato Beetles 

0.830 0.25 0.35 0.292 

Thrips 0.871 0.286 0.2 0.235 

Western Corn 
Rootworms 

0.840 0.324 0.550 0.407 

Model  Accuracy 

YOLOv8 0.969 

YOLOv9 0.972 

VGG-16 0.849 
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excellent precision with a perfect score for Brown 
Marmorated Stink Bugs, along with a strong F1 score. 
Moreover, the YOLOv9 model achieves an accuracy of 
97.2%, which is remarkable (Table 7). Although the 
YOLOv8 and VGG-16 models also perform well in certain 
classes, the YOLOv9 model maintains higher consistency 
and balance across essential performance indicators, with 
YOLOv8 achieving 96.9% and VGG-16 lagging at 84.9% 
accuracy. Hence, YOLOv9 is the most reliable model for 
practical applications in agricultural pest management, 
accurately detecting various insect types and exhibiting 
superior generalization capabilities. Leveraging YOLOv9's 
robust framework could significantly enhance pest 
detection and management strategies, contributing to more 
effective and sustainable agricultural practices in the future. 
 
5. Conclusion  

In conclusion, our study highlights the efficacy of 
advanced object detection models in distinguishing 
between harmful and harmless insects within agricultural 
settings, thereby potentially reducing economic losses due 
to pest damage. Our comparative analysis of YOLO 
versions 8 and 9, along with VGG-16, revealed that 
YOLOv9 outperforms the other models with the highest 
accuracy rate of 0.972. This superior performance 
underscores the advantages of utilizing YOLOv9 for real-
time, accurate pest detection and classification. While 
VGG-16 showed lower accuracy, it still holds value for 
certain applications that may not require the highest 
precision. Future work should focus on further refining 
these models, expanding the dataset to include a broader 
range of insect classes, and integrating these models into a 
user-friendly tool for farmers and agricultural 
professionals. By continuing to advance and optimize 
these detection technologies, we can enhance pest 
management strategies and safeguard crop yields more 
effectively. 
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