
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

119

Manuscript received May 5, 2025
Manuscript revised May 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.5.14

Decoupled Scheduling via Receiver Initiated Approach

Ponsy R.K. Sathia Bhama ¹,Thamarai Selvi Soma Sundaram¹,

Sivakama Sundari .R², Bakiyalakshmi.R²,Thamizharasi.K²

Abstract
Grid scheduling is the process of mapping grid jobs to resources
over multiple administrative domains. Traditionally,
application-level schedulers have been tightly integrated with the
application itself and were not easily applied to other applications.
This design is generic that decouples the scheduler core (the search
procedure) from the application-specific (e.g. application
performance models) and platform-specific (e.g. collection of
resource information) components used by the search procedure.
In this decoupled approach the application details are not revealed
completely to broker, but customer will give the application to
resource provider for execution. The resource providers are
clusters which is a collection of nodes. Moreover, to avoid fault
occurrence and insecure conditions, job migration is performed
with in the clusters. In a decoupled approach, apart from
scheduling, the resource selection can be performed independently
in order to achieve scalability.
Keywords:
Meta, grid scheduling, application-level scheduler, decouple,
scheduler core, cluster and performance model

1. Introduction

GRID is a system for management and aggregation of
autonomous, heterogeneous, computational and storage
resources across geographical and administrational
boundaries. Grid computing is a relatively new distributed
computing paradigm that is gaining importance. It offers a
solution to the increasing demand of highly computational
and storage power, without requiring any extraordinary
investments in the hardware infrastructure. However, in
many cases the grid is not utilized properly without further
optimization such as scheduling mechanisms for efficient
assignment of application to available resources [4]. So
application scheduling is the key issue for deploying
parallel and distributed applications at large scale in
grid.For the purpose of application scheduling, the
problems of discovering available resources, selecting an
application-appropriate subset of those resources, and
mapping of data and tasks onto selected resources are
addressed. This scheduler design seeks flexibility through
modularity. And that module will explicitly decouples the
scheduler core (the search procedure) from application-
specific (e.g. performance models) and platform-specific

(e.g. resource information collection) components used by
the search procedure.

This scheduling approach focuses onminimizing the
execution time of a single application on a set of potentially
shared resources. This approach has been termed
application-level scheduling [2]. In scheduling a large
number of user applications for parallel execution on an
open-resource Grid system, the applications are subject to
system failures or delays caused by infected hardware,
software vulnerability, and distrusted security policy. This
paper considers the risk and insecure conditions in grid
scheduling with in the clusters through job migration.

2. Decoupled Scheduling

This section describes the decoupled scheduling
approach. To provide context for this description, the
detailed scheduling scenario is addressed. A user has an
application and wishes to execute that application on
computational grid resources. The application is parallel
and may involve significant inter-process communication.
The target Computational Grid consists of heterogeneous
workstations connected by LANs and/or WANs [2]. When
the user is ready with the application, the broker is contacted
to submit the requirements of the application. The resource
provider publishes themselves to Broker declaring their
resources and the type of application that they can execute.
Broker then finds the suitable provider for the user’s
requirements. Broker return the domain address of the
provider to user. Using the domain address, user will then
contact the resource provider. The provider then retrieves
CPU speed, memory, cache size and load average from its
nodes. Calculates the completion time for the given
application in all nodes. The least suffered node (least
completion timed node) is selected to execute the
application.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

120

Table I: Proposed algorithms

Algorithms Description

Dynamic Fastest Processor
Task First (DFPTF)

This algorithm provides
fastest processors to largest
task. It is dynamic and avoids
starvation. The metric
considered for this algorithm
is task size.

Sufferage

This retrieves the least
suffering machine for a
particular job. Metrics
considered are processor
speed, memory capacity,
cache size and load average.

Max-Min-Max

Both Max-Min and Min-Min
algorithms are coupled. This
algorithm prefers either large
or small application based on
number of large or small
applications. It is dynamic and
the parameter considered for
this algorithm is execution
time.

3. Phases of Scheduling

The scheduler performs the following sequential tasks

 Phase1: Resource Discovery

 Phase2: Resource Monitoring

 Phase3: Resource Selection.

 Phase4: Job Scheduling

 Phase5: Job execution

The scheduler is responsible for resource discovery,
resource monitoring and resource selection. During
resource discovery, lists of authenticated resources that are
available for job submission are identified. In order to
cope with the dynamic nature of the Grid, a scheduler will
have dynamic state information about the available
resources into its decision-making process. The resource
selection algorithm is responsible for selecting the
resource providers that is capable of executing the
application. The scheduling algorithm will make the
decisions of which task is to be run in which node under
the resource provider. This includes ordering the list of

machines in a resource provider for executing the task.
The monitoring part handles the issue of fault tolerance by
broadcasting the status periodically between the nodes.

Resource Discovery and Monitoring

An information service is a vital component of the
grid infrastructure. It maintains knowledge about resource
availability, capacity, and current utilization. Within any
grid, both CPU and data resources will fluctuate,
depending on their availability to process and share data.
As resources become free within the grid, they can update
their status within the grid information services. The client,
broker, and/or grid resource manager uses this information
to make informed decisions on resource assignments. The
information service is designed to provide:

- Efficient delivery of state information from a
single source

- Common discovery and enquiry mechanisms
across all grid entities

Information service providers are programs that
provide information to the directory about the state of
resources. Examples of information that is gathered
includes:

1. Static host information: Operating system name
and version, processor vendor/model/version/
speed/cache size, number of processors, total
physical memory, total virtual memory, devices,
service type/protocol/port

2. Dynamic host information : Load average, queue
entries, and so on

3. Storage system information : Total disk space,
free disk space, and so on

4. Network information Network bandwidth,
latency, measured and predicted

5. Highly dynamic information Free physical
memory, free virtual memory, free number of
processors, and so on

The Grid Information Service (GIS), also known as the
Monitoring and Discovery Service (MDS), provides the
information services in Globus. The MDS uses the
Lightweight Directory Access Protocol (LDAP) as an
interface to the resource information. Monitoring and
Discovery Service (MDS): MDS provides access to static
and dynamic information of resources. Basically, it contains
the following components:

1. Grid Resource Information Service (GRIS)

2. Grid Index Information Service (GIIS)

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

121

3. Information providers

4. MDS client

Figure 1: Grid Scheduling Infrastructures

Globus Resource Allocation Manager (GRAM) is part
of the Globus Toolkit used for job submission. The Gram
Job Launcher portlet allows a user to submit jobs to a Grid
environment using the Globus GRAM protocol. For this the
user must have a valid GSI Proxy Certificate which can be
loaded through the Proxy Manager Portlet. GIS - Grid
Information Service GIS is part of the Globus Toolkit used
to manage resources information.

4. Scheduling

4.1 Resource Broker

Whenever the user wants to execute the application,
resource broker is contacted for retrieving the resource
provider’s address. The resource broker will maintain a
policy regarding the acceptance of application based on the
cost criteria. Once it accepts the application, a global queue
is maintained. The resource provider will provide the
complete list of all machines available in grid. Since the grid
is a dynamic environment, the broker will watch over the
changes in environment and keeps updating.

The algorithm behind the global queue is Max-Min-
Max. This algorithm is used for selecting an application
from the global queue for allocation .Max-Min [1] is a static
algorithm gives highest priority to largest application,
whereas Min-Min [1] is a static algorithm which gives
highest priority to shortest application. In order to avoid
starvation, both algorithms are coupled. This proposed
algorithm is called Max-Min-Max algorithm (Since
preference is given to max-min algorithm, the name is max-

min-max instead of min-max-min) which is described
below.

Step 1: Start.

Step 2: Take the execution time of all the application in the

queue. Let the number of applications be n.

Step 3: Compute the average execution time (E) that is E=

(∑ execution time)/n.

Step 4: All application in the queue that has their execution

time above E are considered as largest application.

(L).

Step 5: All application in the queue that has their execution

time below E are shortest application (S).

Step 6: If n (L)>=n(S) then start with max-min algorithm

Step 7: min-min and max-min algorithm will consecutively

alternate it.

Step 8: Else start with min-min algorithm

Step 9: max-min and min-min algorithm will consecutively

alternate it.

Step 10: If there are next set of applications go to step2 and

repeat the steps 2-9.

Step 11: Else stop.

4.2 Algorithm Analysis (Max-Min-Max):

Table II: Arrival of Jobs

Jobs Execution time

J1 10
J2 29
J3 3
J4 7
J5 12

First Come First Serve algorithm:

J1 J2 J3 J4 J5

Execution time

Jobs

Job execution time

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

122

Average waiting time = (0+10+39+42+49)/5 = 28
milliseconds

Max-Min-Max algorithm:

Average waiting time = (0+3+31+38+40)/5 = 22.4
milliseconds

4.3 Provider publish to Broker

Resource provider publish themselves to Broker with

their resources and declare the type of applications that it
can execute.Provider consists of group of clusters. When
many resource providers are capable of executing same type
of application , then Broker will break the tie using
parameters like free nodes, reliability of nodes and system
properties like processor speed, processor load and memory.

Figure 2: Requirement submission

4.4 Resource Provider (RP)

4.4.1 Sufferage

Customer now contains the application and provider’s
address. Within the provider which one is least suffered
machine is selected using sufferage algorithm. The metrics
considered for this algorithm are CPU speed, free memory,
cache size, task size and load average [8]. The result of this
algorithm is ordering of less suffering machines within a
provider. The algorithm used for scheduling purpose is
FPLTF (Fast Processor Largest Task First).

Step 1: Start

Step 2: Get the CPU speed, free memory, cache size, and

load average of all machine under a selected

provider.

Step 3: Calculate the completion time using formula,

Completion time = TBA + suffering time. (1)

Suffering time = Task size / (CPU speed * (free

memory + cache size) * (1- load average ratio))

(2)

Where, TBA = time for that node to be available.

Step 4: The customer gives the application in terms of

number of tasks along with their sizes. The task

with largest size is selected first for scheduling

hence framing out Fastest Processor Largest

Task First algorithm.

Step 5: Least completion timed node is selected to

execute the application.

Step 6: Stop.

Figure 3: Application Scheduling and Execution

Suffering time is directly proportional to task size and
inversely proportional to CPU speed, free memory, cache
size and load balance. If the processor has more speed, more
free memory and cache, more load balance (1-load average)
then suffering time for that node to execute the given task
is less. If the preferred node is not available or too busy,
then head node will allocate the task to next preferred node.

User

Broker

Resource Provider

clusters

Submits
requirements

Performs
Max-Min-
Max
algorithm Publish

their
resources

Return
suitable
providers
domain
address

J3 J2 J4 J1 J5

Execution
time

Jobs

Job execution time

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, May 2025

123

4.4.2 Algorithm Analysis (FPLTF)

Fastest Processor Largest Task First

First In First Out

 considering one node for five jobs to execute.

5. Job Migration
The resource provider generates the order in which the

tasks have to be executed. As per that, the head node directs
the tasks to respective sub-nodes in the order. If any sub-
node fails to execute the tasks, the tasks will be migrated to
other nodes in the cluster, in such away the tasks are
replicated by the head node. The replication is performed
only for the application that requires high security. To
workout safe, the scheduler (head node) duplicates the job
to be executed at multiple sites and stop all these replicas
execution, once one of the replicated jobs is successfully
carried out.

6. Conclusion

Thus a decoupled scheduling approach is considered
for parallel applications in a computational grid
environment. Moreover, an exhaustive search of machines
in the grid for a similar kind of applications is also reduced,
which will lead to less time consumption. And also the
performance is evaluated based on the execution time,
processor speed, memory capacity, bandwidth, and cache
size and load average. Thus the application has been
decoupled from scheduling and also dynamic information is
exploited at run time for improved scheduling.

7. Results and Discussion

A pre-scheduling concept is used, since the application
modules are not revealed to the broker. As per that, the
limitation lies here is searching and retrieving more
databases. Moreover, when the application comes for the
first time, tedious search process will occur, which in turn
consumes time. Thereafter when the application comes, this
search process can be avoided using pre-schedule

References

[1] “Risk-Resilient Heuristics and Genetic Algorithms for
Security-Assured Grid Job Scheduling “ Shanshan
Song, Kai Hwang, Fellow, IEEE, and Yu-Kwong
Kwok, Senior Member, IEEE transactions on
computers, vol. 55, no. 6, June 2006 .

[2] “A Decoupled Scheduling Approach for the GrADS
Program Development Environment” Holly Dail,
Henri Casanova and Fran Berman, IEEE 2002.

[3] “Grid Brokers and Meta schedulers Market Overview”
Ilona Gaweda and Chris Wilk, Feb 2006.

[4] “Dynamic Scheduling in Grid Systems” Maria
Chtepen ,sixth FirW PhD Symposium,Faculty of
Engineering ,Ghent University,30th November 2005-
paper nr.110.

[5] “Operating Systems Concepts” Abraham Silberschatz
and Peter B. Galvin, fourth Edition. “The Anatomy of
the Grid” Ian Foster, Carl Kesselman and Steven
Tuecke.

[6] “The Physiology of the Grid-An Open Grid Services
Architecture for Distributed Systems Integration” Ian
Foster,

Carl Kesselman,

Jeffrey M. Nick and

Steven
Tuecke.

[7] “Trading Cycles for Information: Using Replication to
Schedule Bag-of-Tasks Applications on
Computational Grids” Daniel Paranhos da Silva,
Walfredo Cirne, Francisco Vilar Brasileiro

16%

48%

5%

11%
20%

Jobs sizes

J1

J2

J3

J4

J5

0%

100%

node 1

awaiting
for node

acquired
node

0%

100%

node 1

awaiting for
node

acquired node

