
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, April 2025

129

Manuscript received May 5, 2025
Manuscript revised May 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.5.16

High-Level Fault Simulation Methodology for Template-Based
Asynchronous Circuits

Masoud Zamani , Hossein Pedram and Behnam Ghavami

Amirkabir University of Technology, Department of Computer Eng. & IT,
Tehran, Iran

Summary
Complexity of design and the lack of suitable test methodology
are the major obstacles for widespread use of asynchronous
circuit in digital circuit design. Template based synthesis of
asynchronous circuits is accepted as an effective way to decrease
the complexity of design. However, test frameworks such as fault
simulator for synchronous circuits are not applicable for template
based asynchronous circuits. In this paper we study transistor-
level single stuck-at faults in traditional asynchronous templates
and categorize their effects on the functionality of circuit. We
prove by a mathematical specification that single stack-at fault in
Pre-Charge Full Buffer templates has one of the three effects:
deadlock, token generation and token dropping. This
categorization is used to introducing a new high level fault
simulation methodology for these circuits. Based on this strategy
we develop a fault simulator and experimental results show the
effectiveness of the proposed fault simulation methodology.
Keywords:
Asynchronous Circuit, Fault Simulation, Production Rule,
Template Based.

1. Introduction

Asynchronous design techniques have been studied
since the 1950s, and in the last 20 years, a series of
successful chip-design projects have increased interest in
the field [1]. Technological breakthroughs and increased
emphasis on performance have motivated researchers and
designers to reconsider the asynchronous design
methodology[2]. Asynchronous circuits promise high
performance gains and low power when compared to their
synchronous counterparts. However, until recently these
obvious advantages had been overlooked due to the
inherent complexities associated with the design and
testing of asynchronous circuits. Testing asynchronous
circuits is a difficult task, because of two main reasons;
first, the absence of a global clock does not allow the use
of traditional test generation techniques used for
synchronous circuits. Second, correct (i.e. hazard-free)
operations of asynchronous circuits are usually obtained
by introducing redundancies, that is, sacrificing the
testability[3].

Unfortunately, methods used to test of synchronous
circuits are not directly applicable to asynchronous circuits.

This is due, in large part, to the absence of the
global clock signal in the asynchronous circuits. New
methods are required to adapt the rich knowledge on
testing synchronous circuits to test asynchronous circuits.

In this paper we extend previous fault
categorization of QDI (Quasi Delay-Insensitive) circuits to
templates and study effect of transistor level single stack-
at faults in the functionality of the templates then we
change fault effect categorization based on functionality
effect of faults used to introduce a high-level fault
simulation methodology. In order to evaluate our method
we develop a fault simulator tool by this strategy. This tool,
to the best of our knowledge is first of its kind for
simulating template-based QDI circuits. It provides a
framework for monitoring tokens (valid data) in the circuit.
Proposed fault simulator is added to Persia synthesis flow.
Persia is a synthesis tool for QDI asynchronous circuit [4].
It synthesizes high-level description of circuit to pre-
designed PCFB (Pre-Charged Full Buffer) templates,
which produces high speed fine grained pipeline.

The rest of paper is organized as follows: In the
next section, related works will be overviewed; Section 3
overviews the QDI asynchronous circuit design in brief.
Persia synthesis tool and PCFB template will be
introduced in section 4 and 5, respectively. Fault
categorization and proposed fault simulator will be
introduced in Section 5. Section 6 shows experimental
results and then some conclusions are given in the last
section.

2. Related works

In synchronous circuit domain, efficient fault
simulation methods have been well established as the
effects of multiple single-stuck-at faults can be propagated
simultaneously from one gate to the next using only local
information around the circuit nodes to which the fault
effects have propagated [5]. Deniziak [6] presented a high
level fault simulator for calculation fault propagation
through High Level Primitives (HLPs). Reduced Ordered
Ternary Decision Diagrams (ROTDDs) are used to

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, April 2025

130

describe HLPs. They compared this technique with gate
level fault simulator and simulation based. These tools
capture faulty data at clock intervals, so they are not useful
for asynchronous circuits as in this type of circuits there is
no global synchronization clock signal.

A.Lioy[8] and et al. in introduce an efficient test
generator for asynchronous circuits which is based on a
concurrent fault simulator. S.S. Kolay and et al. in [7]
introduce Fsimac, a gate-level fault simulator for stuck-at
and gate-delay faults in asynchronous sequential circuits.

3. QDI Asynchronous Circuit

Asynchronous circuits represent a class of circuits
not controlled by a global clock but rely on exchanging
local request and acknowledge signaling for the purpose of
synchronization. In fact, an asynchronous circuit is
composed of individual modules which communicate with
each other by means of point-to-point communication
channels. Therefore, a given module becomes active when
it senses the presence of an incoming data. It then
performs the computation and sends the result via output
channels. Communications through channels are
controlled by handshake protocols[3][9]. An asynchronous
circuit is called delay-insensitive if it preserves its
functionality independent of the delays of gates and wires
[10]. It is shown that the range of the circuits that can be
implemented completely delay-insensitive is very limited
[10].Therefore some timing assumptions exist in different
design styles that must be hold to ensure the correctness of
the circuit. Different asynchronous techniques distinguish
themselves in the choice of the compromises to the delay-
insensitivity.

Quasi delay-insensitive (QDI) circuits are like
delay-insensitive circuits with a weak timing constraint:
isochronic forks. In and isochronic fork the difference
between the delay through the branches must be less than
minimum gate delay. QDI implementations appear to be
the most appropriate – class of asynchronous circuits that
can be synthesized automatically from large high-level
behavior specifications. This is because of the week timing
constraint that can be easily managed in this design style.
Return to zero handshaking protocol with dual-rail data
encoding that switch the output from data to spacer and
back is the most common QDI implementation form. The
most efficient QDI implementations are based on pre-
charge logic. That makes it easy to incorporate existing
dynamic domino style power balanced structures in the
QDI templates.

The encodings of the channels can be in a variety
of ways. We use a dual rail encoding here the data channel
contains a valid data (token) when exactly one of 2 wires

are high. When the two wires are lowered the channel
contains no valid data and is called to be neutral (Table1).

Table1: Dual rail coding

 d.t d.f

Neutral(“E”) 0 0

Valid ‘0’
Valid ’1’

0
1

1
0

Not used 1 1

One of the major protocols used in asynchronous

circuits is four phase protocol. In a four phase protocol's
sequence a receive action consists of four steps. (1) Wait
for input to become valid. (2) Acknowledge the sender
after the computation performed. (3) Wait for inputs to
become neutral. (4) And lower the acknowledgement
signal. A send action consists of four phases: (1) send a
valid output. (2) wait for acknowledge. (3) Make the
output neutral. (4) wait for acknowledge to lower
output .figure 1 shows a four phase handshake sequence.

Fig. 1. Four-phase protocol

4. Persia: A QDI Asynchronous Synthesis
Tool

Persia is an asynchronous synthesis tool developed
for automatic synthesis of QDI asynchronous
circuit[4][12]. The structure of Persia is based on the
design flow shown in figure 2 which can be considered as
the following three individual portions: QDI synthesis,
layout synthesis, and simulation at various levels. The
simulation flow is intended to verify the correctness of the
synthesized circuit in all levels of abstraction.

CSP (Communicating Sequential Processes) is a
well-known language for description of concurrent
systems which is accepted as a good description language
for asynchronous systems. Persia uses Verilog-CSP[13],
an extension of the standard Verilog which supports
asynchronous communications as the hardware description
language for all levels of abstractions except the netlist
which uses standard Verilog. The input of Persia is a
Verilog description of a circuit. This description will be
converted to a netlist of standard-cell elements through
several steps of QDI synthesis flow. For simpler synthesis

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, April 2025

131

first arithmetic operations are extracted from the code and
the major steps of synthesis only works on the codes
without any arithmetic operations. This is done by the
AFE which also replaces the arithmetic functions by
standard library modules. The two major steps in Persia
synthesis are Decomposition and TSYN. In the following
three subsections we briefly describe the functionality of
these three stages.

4.1 AFE

Arithmetic operations are not synthesizable by
TSYN (part of Synthesizer), so Persia extracts these
operations from the CSP source code and then implements
them with pre-synthesized standard templates. AFE
extracts each assignment that contains arithmetic
operations like addition, subtraction, comparison, etc and
generates a tree of standard circuits which implement the
extracted assignment.

Fig. 2. Persia synthesis flow [4].

4.2 Decomposition

Our synthesis approach is based on pre-design
asynchronous four-phased dual rail templates. Each
template can be considered as a simple pipeline stage. The
most renowned form of these templates is named as pre-
charge full buffer (PCFB)[12][14].A PCFB reads its data
from input ports, performs the computations and writes the
results on the output ports. A PCFB can have multiple
inputs and outputs, have conditional inputs and outputs,
and hold states. The circuit is similar to pre-charge
domino-logic style circuits in synchronous designs except
that instead of a global pre-charge signal local pre-charge
signals are generated. The QDI timing constraint (i.e.

Isochronic fork) is local to each template. Figure 3
represents a PCFB buffer used in Persia synthesis tool.

The high-level Verilog-CSP description of even
very simple practical circuits is not directly convertible to
PCFB. The intention of Decomposition stage is to
decompose the original description into a collection of
smaller interacting processes that is compatible to these
templates and is synthesizable in next stages of QDI
synthesis flow.

4.3 TSYN

Template Synthesizer, as the final stage of QDI
synthesis flow, receives a Verilog-CSP source code
containing a number of PCFB-compatible modules and
optionally a top-level netlist and generates a netlist of
standard-cell elements with dual-rail ports that can be used
for creating final layout. The output of TSYN can be
simulated in standard Verilog simulators by using the
behavioural description of standard-cell library elements.

5. PCFB Templates

At present, most QDI synthesis tools like Persia [4] use
pre-designed PCHB and PCFB templates to synthesis the
high level specifications. The circuit is similar to pre-
charge domino-logic style circuits in synchronous designs
except that instead of a global pre-charge signal, local pre-
charge signals are generated. The internal implementation
of the simple buffer comprised five sub-circuits (Figure 3)
1- Output generation circuit. 2-Input validity check circuit.
3- Output validity check circuit. 4- A sub circuit that
generates the acknowledgement for inputs. 5- A sub circuit
that generates en (enable) signal.

Fig. 3. The PCFB 1-bit buffer

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, April 2025

132

A PCFB template is an asynchronous buffer circuit
that in each cycle of its operation reads some inputs,
performs a particular calculation, and then writes the
results to one or more of its output ports [2]. A PCFB can
have multiple inputs and outputs, have conditional inputs
and outputs, and hold states. All I/O read or write
operations are done using dual-rail four-phase
handshaking protocol. In dual rail encoding, the data
channel contains a valid data when exactly one of 2 wires
is high. When the two wires are lowered the channel
contains no valid data and is called to be neutral. In a four-
phase protocol's sequence a receive action consists of four
steps.

Figure 4 shows the necessary pre-defined
sequences of PCFB internal signals to have correct
operation of synthesized circuit. As seen in figure 4, data
process starts by activating Input Valid and finished by
activating on en signal.

Fig. 4. Sequences of PCFB Signals

6. Fault Simulator

Fault simulation is the process of measuring the
quality of a test. Test stimuli that will eventually be
applied to the product on a tester are themselves first
evaluated by applying them to circuit models that have
been slightly altered to imitate the effects of faults. If the
response at the circuit outputs, as determined by
simulation, differs from the response of the circuit model
without the fault, then the fault is detectable by those
stimuli. After the process is performed for a sufficient
number of modeled faults, an estimate T, called the fault
coverage, or test coverage, is computed. The equation is

T = (# faults detected) / (# faults simulated)

The variable T reflects the quality or effectiveness
of the test stimuli[17][17]. Several fault simulation
algorithms (e.g., Serial, Concurrent, Parallel, etc.) have
emerged over the past three decades. In each instance the
objective has been to reduce the number of computations
and/or memory requirements in order to render the
problem tractable. Some differences in approach result
from differences in basic assumptions about the circuit

being evaluated. When simplifying assumptions are made,
it is possible to take advantage of those assumptions to
produce a faster product, but one that will not function
correctly when those assumptions do not hold. Hence, the
user must understand the capabilities and limitations of the
tool that he or she chooses to use in order to obtain
maximum benefit from it. As mentioned earlier, fault
simulation and in general test environments for
synchronous circuits are not easily applicable for
asynchronous circuits, this is due to deferent
synchronization method and as a result deferent fault
effect in these two styles of digital circuit design. In the
follow we study effect of single stuck-at faults in transistor
level for PCFB templates, then we propose efficient fault
simulation methodology to circuits which synthesized by
this template.

6.1 Single Stuck-at Fault Effects On PCFB
Templates

Testing QDI circuits, using the stuck-at model, is
thoroughly explored in[15]. This testing method classifies
a fault as: 1) inhibiting (preventing an action) which
causes circuit to halt during test, so these faults are testable
2) stimulating (causing an action) which cause a premature
firing of a signal or signals, identifies faults that can’t be
observed easily. To have proper test strategy in PCFB
templates, in follow we study effect of premature firing
faults in this templates. To have mathematical model for
these templates we use production rule, which is an
acceptable specification model for QDI asynchronous
circuits.

QDI circuits are implemented as a network of gates,
where each gate consists of a pull-up network
implemented with p-transistors, and a pull-down network
implemented with n-transistors. Logically, we can think of
a gate as corresponding to two Boolean predicates: G+, the
condition that causes its output ν to be connected to the
power supply (VDD, interpreted as the logic “true” or 1
value in any Boolean expression), and G−, the condition
that causes its output ν to be connected to ground (GND,
interpreted as the logic “false” or 0 value in any Boolean
expression). We denote this gate using the production rule
(PRS) notation [11] as follows:

vG

vG

Using this notation, a two-input NAND gate would be
specified as follows:

outba

outba

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, April 2025

133

Where “Λ” denotes the Boolean AND, “٧” denotes OR,
and “¬” denotes logical negation. A restriction on
production rules is that both G+ and G− must never be true
at the same time, because this would result in a short
circuit. This condition is known as non-interference. If G+
and G− are complements of each other, then the gate
output is always connected to a power supply. This
corresponds to a conventional static CMOS gate and is
referred to as a combinational gate. If there is a state when
both G+ and G− are false, then in this state the output does
not change. If this occurs, then the gate is said to be state-
holding. State-holding gates always contain a staticizer
(a.k.a. a keeper) on their output to prevent the gate output
from changing due to leakage or noise. A fork in a circuit
corresponds to an output of a gate being used as the input
to more than one gate. Each connection from a gate output
to a gate input is referred to as a branch of the fork. We
say that a branch of the fork is isochronic if we must make
a delay assumption about the relative delay of the branch
of the fork relative to the other branches of the same fork
(a detailed technical discussion can be found in[16]). As
mentioned earlier PCFB templates consist of five sub
circuits, production rules of each sub circuit of one bit
PCFB buffer is as follow:

1-Output generation sub circuit:

0_Re)_(

0__0_

1_Re)_(

1__1_

OutsetAckOuten

OutenAckOutIn

OutsetAckOuten

OutenAckOutIn

2- Output_Valid generator sub circuit:

ValidOutputOutOut

ValidOutputOutOut

_0_1_

_0_1_

3- Input_Valid generator sub circuit:

ValidInputInIn

ValidInputInIn

_0_1_

_0_1_

4- en generator sub circuit:

enInputAckValidOutput

enAckInputValidOutput

_

__

5- InputAck generation sub circuit:

InputAckenValidInput

InputAckValidOutputValidInputen

_

__

Now for studying premature firing we inject fault
to production rule of the template as follow: assume en
signal in pull-down network of InputAck generation sub
circuit is stuck-at 1, so production rule of InputAck will
change as follow:

InputAckenValidInput

InputAckValidOutputValidInput

_

__

It means that if a signal in production rules stack-at 0, in
guard which contain faulty signal, that signal will be
replaced by 0 and for stack-at 1, it replaced by 1.

To have realistic results we replace symbol in

production rule by
 which means that delay of firing

is arbitrary.

By these modifications we apply all possible single stack-
at faults to production rules of the templates, by
eliminating faults which cause deadlock, these faults
categorized as follow:

1- Premature firings those cause redundant token (valid
data) generation: The fault causes some redundant tokens
to be generated within the circuit due to following issues:

Positive edge of Output-Valid takes place earlier than
negative edge of Input-Ack (e.g. en stuck-at 1 in the pull-
down network of Output generation sub circuit).

Positive edge of Input-Ack takes place earlier than positive
edge of Output-Valid (e.g. en stuck-at 0 in the pull-up
network of Output generation sub circuit).

Negative edge of Input-Ack takes place earlier than
negative edge of Input-Valid (e.g. Input-Valid stuck-at 0
in the pull-up network of InputAck generation subcircuit)

2- Premature firings those causes some tokens within the
circuit to be dropped due to following issues:

Negative edge of Output-Valid takes place earlier than
positive edge of Output-Ack (e.g. OutputAck stuck-at 1 in
the pull-up network of Output generation sub circuit)

Positive edge of Output-Valid takes place earlier than
negative edge of Output-Ack (e.g. Output-Ack stuck-at 0
in the pull-up network of Output generation sub circuit).

PCFB templates are designed based on dual rail protocol.
Therefore, changing one bit of a valid data encoding
(either (0,1) or (1,0)) results in one of the metadata states:
quiet (0,0) or alarm (1,1). Thus single faults can not
change the value of a token. As seen above it only can
change the number of tokens.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, April 2025

134

So we can conclude that single stack-at fault in PCFB
templates has only one of the three effects: Deadlock,
Token dropping or Token generation.

 6.2 Fault Simulation Methodology

Based on fault effect on templates, it is concluded
that fault change number of tokens, in functionality view.
So, to simulating faulty circuit in high level of abstraction,
we can add property to each predefined templates of
library, which counts number of tokens come in to
template and come out from templates. This property
compares number of input and output tokens to identify
faulty circuit.

Fig. 5. Proposed Fault simulator

This property added to templates before TSYN
stage and after of Decomposition phase of Persia tool. To
simulate faulty circuit in worst and best cases in
systemization of this circuit, random delays are applied.
Test patterns are produced by pseudo-random tests
generation approach modification of Cellular Automata [6].
By identifying location of fault in template (which sub
circuit of template is under testing) efficiency of test
vectors have been increased and time to produce them
have been decreased. The test generator eliminates test
vectors that are not relevant to the place of fault. Flow of
the proposed fault simulator has been shown in figure 5.

7. Experimental results

We inserted token counting property to each pre-
designed templates of Persia after decomposition phase of
synthesis. To evaluate efficiency of our fault simulator, we
implemented primitive gates, listed in table 2. Test vectors
for simulating faults were generated as mentioned earlier
by modification of CA. Table 2 shows results of the
circuits testing.

Table 2: Percentage of fault effects in PCFB primitive gates

 Deadlock
Token

Consume

Token
Generat

ion

AND/NAND 75.80% 11.9% 12.3%

XOR/XNOR 75.64% 11.68% 12.68%

OR/NOR 75.48% 11.73 12.79

Buffer/
Inverter 75.22% 12.29% 12.49%

8. Conclusions

Complexity of design and testing are the major
obstacle for widespread use of asynchronous circuit in
digital circuit design. To overcome design complexity of
these circuits, designers can use template based synthesis
tools. So it is necessary to develop test frameworks which
suitable for this type of circuits. Because of pre-designed
property of these circuits we can use some special study on
fault effects of templates and categorized them to develop
test tools. In this paper we present an efficient high-level
fault simulation strategy for template-based QDI
asynchronous circuits. We study transistor-level single
stuck-at faults in templates and categorize their effects. By
use of mathematical specification of circuit, this fault
categorization has been proved. This categorization is used
to introducing high level fault simulation for this type of
circuits. Based on this strategy we develop a fault
simulator, Experimental results on a set of circuits have
shown the effectiveness of the fault simulator.

References

[1] M.Nystom, E. Ou, A.J.Martin, “An Eight-bit Divider

Implemented in Asynchronous Pulse Logic”, Proceeding of
the 10th International Symposium on Asynchronous
Circuits and Systems(Async’04), IEEE, 2004.

[2] Jens Sparso, Steve Furber, Principles of Asynchronous
Circuit Design A System Prespective, Kluwer Academic
Publishers, 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.5, April 2025

135

[3] D. Koppad, A. Bystrov, A. Yakovlev, “Off-line testing of
Asynchronous circuits,” Proc. of the 18th International
Conference on VLSI Design, pp. 730 - 735, Jan. 2005.

[4] Persia Site: http://www.async.ir/persia/persia.php
[5] E.W. Thompson and S.A. Szygenda, “Digital logic

simulation in a time-based, table-driven environment part 2,
parallel fault simulation,” Comput., Vol. 8, pp. 38-49, Mar,
1975.

[6] Deniziak and K. Sapiecha, "FAST HIGH-LEVEL FAULT
SIMULATORS", IEEE , 2004

[7] S.Sut-Kolay, M.Roncken, K.Stevens, P.P Chavdhuri, R.Roy,
“ Fsimac: A Fault Simulator for Asynchronous Sequential
Circuits”, IEEE, 2000.

[8] A.Lioy, F.Maino, G.Odass, M.Poncino, “Testing
Hyperactive Faults in Asynchronous Circuits”, IEEE, 1995.

[9] Jens Sparso, Steve Furber, “Principles of Asynchronous
Circuit Design-A System

[10] Alian .J. Martin, “The limitation to delay-insensitivity in
asynchronous circuits”, In W.J.Dally,ed,Sixth MIT
Conference on Advanced Research in VLSI. Cambridge,
Mass, MIT Prwss, 1990.

[11] C. LaFrieda, R. Manohar, “Fault Detection and Isolation
Techniques for Quasi Delay-Insensitive Circuits,” In Proc.
of International Conference on Dependable Systems and
Networks, Italy, June 28- July 01, 2004.

[12] A. J. Martin, “Synthesis of Asynchronous VLSI Circuits,”
Department of Computer Science California Institute of
Technology, Pasadena, California, CA, Tech. Rep. TR-
A267744, pp. 1-143, MAR 2000.

[13] Arash Seifhashemi, Hossein Pedram, "Verilog HDL,
Powered by PLI: a Suitable Framework for Describing and
Modeling Asynchronous Circuits at All Levels of
Abstraction", Proc. Of 40th DAC, Anneheim, CA, SA, June
2003.

[14] M.Najibi, K. Saleh, H.Pedram, "Using Standard ASIC
Back-End for QDI Asynchronous Circuits: Dealing with
Isochronic Fork Constraint" In Proc. Of GLSVLSI/07,Italy,
March 11-13, 2007,

[15] A. J. Martin and P. J. Hazewindus, “Testing delay-
insensitive circuits,” in Proc. Univ. California Santa Cruz
Conf.: Adv. Res. VLSI, 1991, pp. 118–132.

[16] R. Manohar and A. J. Martin. Quasi-delay-insensitive
circuits are Turing complete. In Proc. International
Symposium on Advanced Research in Asynchronous
Circuits and Systems. IEEE Computer Society Press, 1996.

[17] Alexander Miczo, "Digital logic testing and simulation",
John Wiley & Sons, New Jersey, 2003.

Masoud Zamani was born in Mianeh in
Azerbaijan-E-Sharghi of Iran, on 11 Jun,
1983. He received B.S. and M.S. degrees
in Computer Engineering from Shahed
University and Amirkabir University of
Technology in 2005 and 2008,
respectively. He is interested in Digital
Design, Bio-inspired Design and Test.

Hossein Pedram Received his BS degree
from Sharif University in 1977 and MS
degree from Ohio State University in 1980,
both in Electrical Engineering. He received
his PhD degree from Washington State
University in 1992 in Computer
Engineering.
Dr Pedram Has served as a faculty
member in the Computer Engineering

Department al Amirkabir University of Technology since 1992.
He teaches courses in Computer architecture and distributed
systems. His research interests include innovative methods in
computer architecture such as asynchronous circuits,
management of computer networks, distributed systems, and
robotics.

Behnam Ghavami was born in
Esfarayen in North Khorasan of Iran, on
April 9, 1982. He received his BS
degree in Computer Engineering from
Bahonar University in 2005. He
graduated from the Tehran Polytechnic
University. He is a member of
Asynchronous Design Laboratory in the

same school.

.

