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Summary 
The purpose of deregulation is to give consumers free choices of 
their electricity supply. Electricity generators, transmission, and 
distribution companies are driven by the market to maximize their 
profits. The accuracy of electricity spot price forecasting is crucial 
to any of the above participating companies, since it provides 
them with spot price signal in the future that is used to optimize 
the operational planning. In this article, we propose a wavelet 
multiscale decomposition based autoregressive approach for the 
prediction of one-hour ahead and one-day ahead electricity spot 
price based on historical electricity price and predicted electricity 
load data. This approach is based on a multiple resolution 
decomposition of the signal using the redundant Haar à trous 
wavelet transform whose advantage is taking into account the 
asymmetric nature of the time-varying data. We assess results 
produced by this multiscale auto-regressive (MAR) method, with 
single resolution autoregressive (AR), and multilayer perceptron 
(MLP) model. Numerical results are based on the New South 
Wales (Australia) electricity load and price data that is provided 
by the National Electricity Market Management Company 
(NEMMCO).   
KEYWORDS:  
Wavelet transform, electricity price forecast, time-series, multi-
layer perceptron.   

 
1. INTRODUCTION 

Modern societies have become very much depend 
on power energy to function and operate. Hence, power 
systems are being pushed to their limits to meet their 
customers’ demands, and spend a lot of money in their 
operation scheduling. Furthermore, power systems need to 
operate at even higher efficiency in a deregulated 
electricity market in which the participating companies 
such as electricity generators and retailers have to compete 
in order to maximize profits to their stakeholders and 
minimize risk due to price spikes. Thus, accurate spot price 
forecasting plays a key role in ensuring adequate electricity 
generation to meet the customer’s demands in the future. 
For many years, the electricity industry has been operating 
as monopoly under a budget and pricing structure, directly 
or indirectly set by the government in most countries. 
During pre-deregulation era, generators, retailers, and 
consumers participating in the electricity supply industry 
plan their business strategies assuming the price of 

electricity was constant in terms of tariffs, whereas the 
price of the electricity varies every half-hour or an hour in 
a deregulated electricity market. Over a decade or so, many 
countries have begun major electricity industry 
deregulation and restructuring. The purpose of deregulation 
is not only to implement a new structure where a central 
management body operates a wholesale market for trading 
electricity between generators and retailers, but to 
maximize returns to their stakeholders as well. 
Subsequently, it gives consumers free choices of their 
electricity supply. Fig. 1 shows that the generators compete 
by providing generation bids and their associated prices to 
the central management body. The retailers also compete 
by providing the consuming bids. The central body then 
matches the supply with the demand, and selects the 
generators required to produce electricity power at different 
times for the whole day. In turns, the retailers pay for the 
electricity they use from the electricity pool and distribute 
it to the consumers.   

In the deregulated market, all electricity supply 
industry market participants being generators, retailers or 
consumers could have a big advantage in terms of making 
profits by using an electricity spot price forecast. Thus, the 
participant with accurate and best forecast of the future 
prices would be in the most confident position to negotiate 
contracts of greatest benefits to their stakeholders. The aim 
of spot price forecast is to predict future electricity price 
based on historical spot price and predicted load data [5], 
[6].   

Traditionally forecasting methods are mostly based 
on statistical linear regression such as Autoregressive (AR), 
and Autoregressive-Integrated  Moving Average (ARIMA), 
and General Autoregressive Conditional Heteroscedasticity 
(GARCH) models [8], [13[, [23], have been used for spot 
price forecasting [9], [12], [16]. Time-series models [18], 
[29] have also been used for price forecast. In recent years, 
modern methods based on artificial intelligence have 
shown promising results. The Feed-forward Artificial 
Neural Network (ANN) or Multi-Layer Perceptron (MLP) 
based methods have received great attention for price 
forecast. The ANNs as supervised models have been used 
to deal with the nonlinearity and non-stationary in 
electricity pool price prediction by producing good and 
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satisfactory results [19], [22], [27]. The ANNs are well 
suited to modeling the complex, nonlinear relations 
involved in price forecasting. These complex relationships 
are modeled through a process of learning from examples 
so called “training”. This training consists of learning from 
examples of past price and load behaviors. During the 
process, ANNs develop internal relationships among these 
factors, and then use these relationships to synthesize the 
price forecast. Good reviews on spot price solver can be 
found in [7].   

In this article, we explore how the use of linear 
regression fed with wavelet-transformed data can aid in 
capturing useful information on various time scales. We 
also show that multi-resolution based autoregressive 
approaches outperform the traditional single resolution 
approach, and even the well-known nonlinear based neural 
network method (Multi-Layer Perceptron) to modeling and 
forecasting. 

Wavelet transforms provide a useful decomposition 
of the time series in terms of both time and frequency. 
They have been used effectively for image compression, 
noise removal, object detection and large-scale structure 
analysis, among other applications [25], [26].    

We use the Haar à trous wavelet transform 
throughout this article. The original signal data can be 
expressed as an additive combination of the wavelet 
coefficients at different resolution levels. We introduce the 
non-decimated Haar wavelet transform in [31], and this 
method was also used in [24]. This choice of wavelet 
transform was motivated by the fact that the wavelet 
coefficients are computed only from data obtained 
previously in time, and the choice of a non-decimated 
wavelet transform avoids aliasing problems.   

The wavelet transform has been proposed for time 
series analysis in many papers, includes filtering and 
forecasting in recent years. For financial time series 
prediction [1], [24], [26], wavelet based on a neural 
network [2], [31], pool price prediction by Neuro-Fuzzy 
combination [15], Web traffic forecast [3], [4], Kalman 
filtering [10, and an AR (autoregressive) model [24]. See 
also [11] which relate the wavelet transform to a multi-
scale autoregressive type of transform. Wavelet networks 
are supervised neural networks with wavelet functions 
replacing the widely used sigmoid transfer functions [30]. 

 
 

 

Fig. 1. A deregulated electricity market structure. 

 

2. FORECASTING  USING WAVELET 

DECOMPOSITION 

Our task is to consider the approximation of a time 
series at coarser and coarser resolution, summarized in a 
multi-resolution decomposition. The individual time series 
resulting from the decomposition, taken together, can 
provide a detailed picture of the underlying processes.  

 
2.1 The Haar à trous Wavelet Transform 

The à trous wavelet can be described simply as 
follows. First, perform successive convolutions with the 
discrete low-pass filter h:  
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where the finest scale is the original series: C0 (t) = X(t) 
(see e.g. [28]). The increase in distances between the 
samples points (i.e. 2il) explains why the name à trous 
(with holes) has been applied to this method. The low-pass 
filter, h, is B3 spline, defined as  16
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of compact support (necessary for a wavelet transform), 
and is point-symmetric. The latter does not allow for the 
fact that time is a fundamentally asymmetric. Now, from 
the sequence of smoothing of the signal, we take the 
difference between successive smoothed versions to obtain 
the wavelet coefficients wi:    

     kki CCkw ii
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The latter provide the detail signal, or wavelet 

coefficients, which we hope in practice, will capture small 
features of interpretational value in the data. It is easy to 
show that we have the following expansion of the original 
data: 
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However, the à trous wavelet transform with a 

wavelet function related to B3 spline function, as described 
above, is not appropriate for a directed (time-varying) data 
stream. To cater for the requirement that future data values 
cannot be used in the calculation of the wavelet transform, 
we use the Haar à trous wavelet transform, introduced in 
[31], and more details in [6]. 

The non-decimated Haar algorithm is exactly the same 
as the à trous algorithm, except that the B3 spline based 
low-pass filter h is replaced by the simpler filter  2

1
2

1 , . 

There, h is now non-symmetric, thus the Haar à trous 
algorithm. Consider the creation of the first wavelet 
resolution level.  

We have created it by convolving the original signal 
with h: 
                  25.01
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At any time point, k, we never use information after k 
in calculating the wavelet coefficient. The Haar à trous 
transform provides a convincing and computationally very 
straight-forward solution to troublesome time series 
boundary effects at the time point t. More experimental 
results with this redundant transform can be found in [31]. 

Fig. 2 shows the transform on a sample set of New 
South Wales (NSW) electricity spot price. The element 
wise sum of scales 1 through 6, plus the smooth trend, 
gives the original data set. Note the following: (i) all 
wavelet scales are of zero mean; and (ii) the smooth trend 
plot is very often much larger-valued (as it is the case here) 
compared to the max-min ranges of the wavelet 
coefficients. 

Fig. 3 shows which pixels of the input signal are used 
to calculate the last wavelet coefficient in the different 
scales. A wavelet coefficient at a position t is calculated 
from the signal samples at positions less than or equal to t, 
but never larger. 

 
 

2.2 Linear Multiscale Based Forecasting 

We used the Haar à trous wavelet decomposition 
described above of the signal for forecasting. The 
forecasting problem considered is the determination of one 
hour-ahead electricity forecast. Instead of using the vector 
of past electricity price observations X = (X1,...,XN) to 
forecast XN+1, its wavelet transform is used. The pool price 
varies with the electricity load as shown in Fig. 4 during a 
typical day. 

Renaud et al. [17], [20], [21] have found that the 
wavelet coefficients at each scale (j) that will be used for 

the forecast at time N+1 have the form wj,N-2 j(k-1) and cJ,N-

2J(k-1)  for positive value of  k as shown in Fig. 5. 
 

Assume a signal X = (X1,...,XN) and assume we want 
to forecast XN+1. We use the coefficients wj,N-2 j(k-1) for 
k=1,…,Aj where j=1,…,J and cJ,N-2J(k-1) for k=1,…,Aj+1. See 
Fig. 5 when J=4 and Aj=2 for j=1,…,J+1.     

 
A one-step forward forecast of a linear autoregressive 

model or AR(p) process is written:  
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 are ordinary least squares estimators.  

 
In order to use wavelet decomposition, we consider 

Multi-resolution AR forecasting (MAR) [20], [21]: 
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where w = (w1,...,wJ,cJ) represents the Haar à trous wavelet 
transform of X, i.e. cwX J

J

j j
  1

.  

 

 
 

Fig. 2. A Haar à trous wavelet transform of a sample set, of 744-value, 
hourly electricity spot price. 
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Fig. 3. Redundant Haar à trous wavelet transform - this shows which time 
steps of the signal data are used to compute the last wavelet coefficients at 

each different scale. 
 
 

 
 

Fig. 4. Typical daily electricity load versus pool price pattern. 

 
Fig. 5. Ten wavelet coefficients, MAR (2) with 4 wavelet scales plus the 

smoothed array, that are used for the forecast of the next value XN+1. 
 

Fig. 5 shows which wavelet coefficients are used 
for the forecasting using Aj=2 for all resolution levels j, and 
a wavelet transform with five scales (four wavelet scales 
plus the smoothed array). To estimate the 
p=Aj,j=1,…,J+1, unknown coefficient vector () whose 
variables are the (aj,k) described above, we used the least 
squares method: minimizing the sum of squares of the 
differences between the forecast value in (6) and the actual  

value XN+1 over all the values of N in the training sample 
time, which lead to solve the normal equations: XZ   

where Z is the matrix as pn   matrix composed of the n 

sample of the input  variables {wj,N-2 j(k-1), cJ,N-2J(k-1)} and the 
observed (actual) 1n  vector X. 
 

3. IMPLEMENTATION 
 

In this article the MATLAB7.0 high level 
programming language has been used to implement the 
proposed forecasting methods, the single resolution 
autoregressive model (AR), multiscale wavelet based 
autoregressive model (MAR), and the multilayer 
perceptron neural network (MLP). The simulations have 
been run on a Microsoft Windows XP based platform (Intel 
Pentium processor 1400MHz, and 256 MB of RAM). The 
fast Levenberg-Marquardt back-propagation training 
algorithm was used to train the neural network due to 
relatively large training data sets. 

The proposed spot price forecast system is 
composed of two forecasting modules as shown in Fig. 6. 
The first module is the load forecasting module [5], [6] and 
the second module is the spot price forecasting based on 
Haar à trous wavelet multi-resolution autoregressive method. 
It is summarized in 3 steps as follows: 

 
Step1: Training and Testing Data Preparation 

 Creating training and testing data sets for loads and 
prices. 

Step2: Training 
 Training daily data of loads and prices based on 

strictly historical data; produce one hour ahead 
prediction of load. 

Step3: Generalization (Testing) 
 Using historical data of load and price, and current 

predicted load, predict current price. 

Fig. 6. wavelet-based multiscale autoregressive spot price forecast system. 
 
 

4. NUMERICAL RESULTS 
 

The above models were assessed on the New South 
Wales (Australia) real price data from electricity market 
data which is available publicly from the National 
Electricity Market Management Company (NEMMCO). 
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For comparison, the MAR model’s results were 
compared with the ones produced by basic single 
autoregressive (AR) model [23], Levenberg-Marquardt 
back-propagation based multilayer perceptron (MLP)[14].  
 
 
4.1 Input Data Preparation And Training 

The input data consists of historical electricity price 
and load which was collected over 3 years (Jan 1 1999 to 
Dec 31, 2001): 26297 hourly actual load and price values, 
to train the above models; and data of one year (Jan 1 2002 
to Dec 31 2002) is used for testing whereby the predicted 
load is used instead of actual load. In other words, it is a 
coupled model where load is being predicted [5], [6] and is 
being fed into the price forecaster during testing period as it 
is the case in real time when no current load (actual) is 
available. As examples for testing we chose days from 
different seasons, including 3 Jan 2002  (see Table I). The 
forecasting architectures used including MLP were defined 
from the training data; but data from test period was used – 
of necessity – to get the one-hour ahead forecast.  

In the comparisons of model performance, the price 
forecast accuracy is determined in terms of two 
performance measures which are adopted here as follows: 

 
Absolute Percentage Error (APE): 
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Mean Absolute Percentage Error (MAPE): 
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Root-Mean Squares Error:  
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where m is the total number of hours predicted, Actual(i) is 
the actual spot price for the hour i, and Forecast(i) is the 
predicted spot price for the hour i. 
 
4.2 One-Hour Ahead Spot Price Forecasting 

The best linear AR model found, non-
mutiresolution autoregressive AR (25), based on the 
Bayesian Information Criterion (BIC) [23]. An MAR(7), i.e. 
multiresolution AR(7) with 2 wavelet resolution scales, 
model provided better results, in terms of MAPE (%) and 
RMS performance measures described above, compared to 
AR and other non-linear approaches such as  MLP (back-
propagation, 3 layers, 3 input units: {1 input: price at same 
hour of previous day + 1 input: price at same hour of 
previous week + 1 input of predicted load at same hour [5], 
[6]}, 10 hidden units, 1 output unit),  which gives best 
performance on the training data set during the learning 
process.  

As shown in Table I, AR, MAR, and MLP models, 
as described above, have been used to forecast one-hour 
ahead electricity price.  
 Fig. 7 shows simultaneous plots of the actual load 

versus respectively MAR, MLP, and AR based 
forecasted spot price for a day of January 3, 2002. It 
also shows a plot of the differences between actual 
and forecasted price, MAR, MLP, AR respectively. 

 Table I and II describe testing results on a selected 
day based on 3 different models.  
 

 

5. CONCLUSIONS 

In this article a linear multi-resolution 
autoregressive (MAR) method has been proposed based on 
a wavelet transform to forecast one-hour ahead electricity 
spot price of the New South Wales (Australia) electricity 
market. This wavelet transform is the redundant Haar à 
trous wavelet transform which decomposes the signal data 
into multiple resolution scales and has the advantage of 
being shift-invariant. It is also easy to implement and is 
computationally efficient.  

The simplest MAR method exhibits higher ability 
of generalization than the single AR method. Unlike AR, 
the MAR’s forecasting method uses a small number of 
wavelet coefficients of the decomposition of the past values 
on each scale. MAR also outperformed the ordinary non-
linear methods such as multilayer perceptron (MLP). The 
experiments show that MAR is the best forecaster. It also 
shows that MAR model is very well suited to give the 
competitive advantage of an electricity spot price forecast 
to generators, retailers and consumers. Hence, the 
participant with accurate and best forecast of the future 
prices would be in better position to negotiate contracts of 
greatest benefits to their stakeholders. Accuracy of the load 
forecaster model is absolutely crucial as it is fed into the 
spot price forecaster. 

 
Table I 

One-hour ahead hourly price forecasting results for a day of January 2002 
 

Forecasted Day of January 3, 2002 (Summer  spot price) 
Model Max APE (%) MAPE (%) RMS 

MAR(7)/Scale = 2 9.5785 2.7747 0.6326 
AR(25) 23.1588 6.1952 1.7738 

MLP (3-10-1) 27.5532 9.6908 2.2043 
 

Table II 
One-hour ahead hourly price forecasting results for a day of January, 3rd 

2002 

Hour 

Actual 
Price 

in 
$/MW 

Forecasted Spot Price  by 

MAR(7)/Scale=2 AR(25) MLP 1 

$/MW 
APE

% 
$/MW 

APE
% 

$/MW 
APE

% 

00 22.90 22.23 2.93 17.60 23.2 20.16 12.0 
01 20.02 19.88 0.72 16.68 16.7 17.42 13.0 
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02 16.53 17.12 3.57 16.37 0.99 16.19 2.08 
03 14.66 16.06 9.58 15.04 2.60 14.02 4.35 
04 15.23 15.66 2.85 14.68 3.63 13.72 9.91 
05 14.95 16.20 8.36 15.03 0.54 14.62 2.19 
06 16.34 16.85 3.12 15.79 3.38 16.88 3.33 
07 17.93 17.62 1.74 16.67 7.01 18.08 0.85 
08 17.74 17.98 1.37 17.62 0.68 19.51 10.0 
09 22.18 21.15 4.67 19.24 13.3 24.11 8.70 
10 22.43 22.07 1.59 20.50 8.60 25.33 13.0 
11 22.90 22.33 2.50 20.67 9.74 25.06 9.43 
12 22.90 22.12 3.40 21.40 6.54 25.08 9.54 
13 22.90 22.47 1.86 22.21 3.00 25.04 9.35 
14 22.90 23.12 0.98 22.17 3.17 25.08 9.51 
15 22.90 23.22 1.42 23.72 3.56 25.07 9.48 
16 22.90 23.73 3.63 25.44 11.1 25.07 9.48 
17 22.90 22.65 1.11 23.09 0.82 25.05 9.40 
18 19.74 20.04 1.54 19.32 2.11 23.76 20.4 
19 17.08 18.19 6.48 18.72 9.59 21.79 27.6 
20 18.26 18.00 1.45 18.13 0.70 19.36 6.00 
21 16.90 16.76 0.82 15.93 5.74 18.58 9.91 
22 16.97 17.11 0.80 16.03 5.55 18.65 9.90 
23 18.16 18.18 0.13 16.98 6.52 20.58 13.3 

Max APE (%) 9.58  23.2  27.6 
MAPE (%) 2.77  6.20  9.69 

RMS 0.63  1.77  2.20 

 
1 input neurons=3 (fed by original data), hidden neurons=10, output neurons=1. 
MLP’s learning parameters of Levenberg-Marquardt training algorithm (mu=0.001, 
mu_dec=0.1, mu_inc=10, mu_max=1010). 
 
 

 
Fig. 7. Actual spot price for 3 Jan 2002. Below: actual minus MAR, MLP, 

AR respectively, based forecast. 
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