
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.6, June 2025 
 

 

81 

Manuscript received June 5, 2025 
Manuscript revised June 20, 2025 
https://doi.org/10.22937/IJCSNS.2025.25.6.10 

 

A Novel Complex Feedback Independent Component Analysis 
Algorithm and its Application to Fingerprints Image Separation  

V. Singh†,  C. M. Markan††, P. K. Kalra††† and V. G. Das††        
 

† Indian Institute of Information Technology Allahabad, India 
††Dayalbagh Educational Institute, Dayalbagh, Agra, India 

††† Indian Institute of Technology Kanpur, India 
 
  

 
Summary 
Independent Component Analysis (ICA) is now a day become a 
more stable and sophisticated statistical method to analyze any 
multivariate data. There are various ICA algorithms already 
available to find the independent components as well as to 
separate the sources from the mixtures. Reviews show that 
researchers have focused more on separation of simulated data 
rather than the real life data. Most of the available algorithms are 
not able to completely solve the separation problem of the real 
life mixtures of images and audios. We have proposed a novel 
algorithm known as complex feedback ICA algorithm (complex-
FEBICA), which is a gradient based algorithm with feedback 
architecture. It is well known that in the complex domain, 
rotational invariance can be found; complex-FEBICA is highly 
applicable to the real life mixtures. We have applied our 
algorithm to different fingerprint mixtures either created 
artificially or real life mixtures and have demonstrated the 
successful separation of fingerprints from mixtures. We are also 
able to separate m fingerprints out of less than m unknown 
mixtures. 
Keywords: 
Independent component analysis (ICA), rotational invariance, 
complex domain, FEBICA, fingerprints. 

1. Introduction 

In most of the real world situations, we have access to 
the signals that are embedded in noise or sometimes even 
mixed. Practically, we don’t know how these signals were 
mixed and what the mixing matrix was? Such mixtures are 
called blind mixtures. The method of extracting original 
sources from these mixtures are known as “Blind Source 
Separation (BSS)” and such problem is termed as “Blind 
Source Separation Problem (BSSP)”. Independent 
component analysis has been widely used to solve blind 
source separation problem (BSSP) in a variety of 
applications.  
 
BSSP can be mathematically defined as follows:  
Let X: Φ → Rn be an independent random vector, and 

let g : Rn → Rm be finite and measurable. An ICA of Y = g 

o X is called BSS of (X, g). Given a full rank n × m matrix 
A called mixing matrix, an ICA of Y = AX is called BSS of 
X.  

Again, in the case of square BSS, m = n; which 
means that the mixing matrix A is invertible. From 
definition it is clear that Y is the observed variable or 
signals, A is the mixing matrix and X is the original 
signals and in real life situations, we only observed Y. Let 
A = (a1|...|an) with ai є Rn, we can write, 
 

  
Thus, it is clear that multiplying the sources with non-

zero constants does not change their independence, so A 
can only be found up to scaling. Furthermore, permuting 
the sum in the index i above do not change the model, so 
only the set of columns of A can be found, but not their 
order. Thus, we can see both the scaling indeterminacy and 
the permutation indeterminacy. So, we can get large 
number of solutions after applying ICA. Some kind of 
normalization often be used for reducing the set of 
solutions: For example, in the model we could assume that 
var (Xi) = 1 i.e. that the sources have unit variances or that 
|ai| = 1. These conditions would restrict choices for the i to 
only two and we can see the sign indeterminacy.  

In real world situations, there are following types of 
possible cases:  

1) Sensors are equal to the number of sources. 
2) Sensors are greater than the number of sources. 
3) Sensors are less than the number of sources. 
If m > n i.e. in the case of more mixtures than sources, 

the model above is called overdetermined or 
undercomplete. In the case m < n i.e. in the case of fewer 
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mixtures than sources, the model is known as 
underdetermined or overcomplete.  

If the mixing is convolutive in nature, we should 
search for an algorithm that works in the complex domain. 
Most of the researchers have worked on functional 
resonance imaging (fMRI) image data taking it as a real 
valued image. But, the actual data is acquired as complex 
valued images. When performing an analysis of fMRI data 
using the complex- valued images, results demonstrate an 
increased ability to isolate the task related functional 
changes [1,2] illustrating the importance of performing 
source separation directly on the acquired data that is 
complex valued. If we work in the frequency domain and 
use the Fourier transform of the images we will again get 
the complex-valued data. Algorithms for ICA of complex-
valued data have been proposed in [3, 4, 5, 6, 7, 8]. A 
popular neural-network approach for ICA utilizes the 
principle of information maximization (infomax) [9]. This 
approach utilizes an intuitively meaningful contrast 
function (mutual information), typically, provides a simple 
learning rule has shown promising performance on a 
number of synthetically created BSS problems.  

In this paper we have proposed a new feedback 
based ICA algorithm that work with the complex weights 
and in the complex domain. The feedback architecture is 
very similar to the Hopfield network; i.e. the self-feedback 
of the neuron is zero. The non-linearity used in our case is 
hyperbolic tangent of tan-sigmoid. Introducing this non-
linearity we create a narrow boundary, which is helpful in 
distinguishing the different independent components. As, 
probability of finding different independent vectors 
reduces with the limited or reduced space and 
consequently the probability of finding a single 
independent vector in that reduced space increases.  

The feed-back architecture is helpful in decreasing 
the mutual information. We successfully applied our 
algorithm to the artificially created fingerprints mixtures as 
well as real-life fingerprints mixture data obtained from 
some security agency. Also, complex valued neural 
networks enable us to automatically capture good 
rotational behavior of complex numbers and hence very 
useful in the case of rotated fingerprints mixture. 

2. Methodology 

In the complex-valued neural networks, all 
parameters are complex numbers. We have applied the 
complex methodology individually to the real and 
imaginary part of the existing gradient based method. The 
second order structure of a complex random vector can be 
found in [11,12,13,14] and higher- order statistical 
structure can be found in [15]. Any complex number can 
be notated as follows: 

 

With modulus defined by, 

 
The Euclidean norm of vector z can be denoted as: 

 
 
ct = conjugate transpose or the Hermitian adjoint. Any 
random vector (r. v.) can be defined as follows:  

 
The expectation value of the complex r. v. can be given by, 

 
And the complex covariance matrix can be given by, 

 
If the two complex vectors are uncorrelated then the 

covariance of  and  must be zero. The covariance 
matrix must be a square matrix. Based on the covariance 
matrix, the eigen analysis or SVD analysis can be done to 
find out the direction of the principal components. This 
can be simplified by separate analysis of both the real and 
imaginary part of the covariance matrix. 

Using the PCA, the second - order dependency will 
be removed. At the same moment, if the case is of greater 
number of sensors than sources, we can reduce the 
dimension of the data to get less number of sources. The 
complex weights has been given by,  

 
and the feedback weights has been given by, 

 
with diagonal zero i.e. 

 
The non-linear function has been defined as, 

 
Where, 

 
And 

 
The function is bounded over the entire complex plane. 
The final weight update equation for infomax using natural 
gradient has been given with the reference of [9](Entropy 
maximization) as,  

 
and the final independent vectors can by found using, 
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The convergence of complex FEBICA can be shown as 
same derived in [6]. 

3. Applications and Results 

The complex FEBICA has been successfully applied 
to the following mixtures:  

1) The complex FEBICA has been applied firstly on the 
two synthetic fingerprints mixtures created in the lab using 
the NITZEN fingerprint scanner. In figure 1, the original 
fingerprints and their mixtures have been shown. The 
fingerprints mixtures was created using the same 
Fingerprints but with a rotation of 900. In figure 2, the 
separation results have been shown using standard 
infomax algorithm, fastICA algorithm and complex- 
FEBICA algorithm respectively. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Original Fingerprints and their Mixtures 
 

2) The second data as shown in figure 3, has been obtained 
using the Iboss fingerprint scanner (Indian product), which 
has a facility to scan overlapped fingerprints. The 
separated fingerprints using FastICA algorithm, Natural 
Gradient - Flexible ICA algorithm, Robust Joint 
Approximate Diagonalization of Eigen matrices (JADE) 
algorithm, Self Adaptive Natural Gradient algorithm with 
nonholonomic constraints, Robust Second Order Blind  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Separation Results (mixed images are correlated 

by 98% while separated images are having 0% correlation) 

 

Identification with Robust Orthogonalization 
algorithm and Complex - FEBICA algorithm has been 
shown in Figure 4. 

 

 

 

 

 

 

 

Fig. 3. Overlapped fingerprints obtained from iboss fingerprint 
scanner 

 

3) The image mixture (single image) shown in figure 5 has 
been obtained from some security agency. In this case, we 
don’t know the number of the original fingerprints. Now, 
objective was to separate out the fingerprints as well as to 
find out the original sources. Complex FEBICA has been 
applied to this image and five separated fingerprints have 
been found from a single image. The same has been 
crosschecked and justified again with the security agency. 
None of the existing algorithm was found successful for 
separation of the present fingerprint mixture. The complex 
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FEBICA results as well as the result obtained from other 
existing algorithms have been comparatively shown in 
figure 6.  

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 5. Real Spot Fingerprints mixture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Separated Fingerprints using different existing 
algorithms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig.  6. Five Separated fingerprints from a single image 
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3. Conclusion 

In this paper, the new complex domain based 
feedback independent component analysis (complex 
FEBICA) algorithm has been proposed and exciting 
separation results have been demonstrated. The new area 
of real - life fingerprints separation has been identified as a 
target application of ICA for providing analysis in the 
security areas. Separation of the fingerprints and then 
matching with the database is of great use. The results 
reported are just the algorithmic output. Use of some of the 
filtering techniques can improve the quality of the 
obtained fingerprints images. The same algorithm is 
applicable to any image mixture. The reported result 
demonstrates that this algorithm is having potential to 
extract the features even when there are less number of 
sensors than sources. Complex FEBICA can be further 
enhanced to get better results.  
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