
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.6, June 2025

135

Manuscript received June 5, 2025
Manuscript revised June 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.6.18

. Dynamic Task Scheduling Using Trained Neural Network and

Genetic Algorithm
Suhani Kumari

kumarisuhani316@gmail.com
Department of Computer Science & Engineering

RITS, Bhopal

Himanshu Yadav
himanshuyadav86@gmail.com

Department of Computer Science & Engineering
RITS, Bhopal

Chetan Agrawal
chetan.agrawal12@gmail.com

Department of Computer Science & Engineering
RITS, Bhopal

Abstract
This paper focus on allocation of cloud resources where two
models were developed for this work. First was TLBO (Teacher
Learning Based Optimization) genetic algorithms which find the
correct position for the process to execute. Here some information
used for analysis are total number of machines, memory,
execution time, etc. So, outcome of the selected training process
sequence were used as training input to the Convolutional Neural
Network for learning. Here training was done in such a way that
all set of features were utilized in pair with their process
requirement and current position. For increasing the reliability of
the work whole experiment was done on real dataset. Result shows
that proposed GNNLB model has overcome various evaluation
parameters on different scale as compared to previous approaches
adopt by researchers.
Keywords:
Cloud Computing, genetic algorithm, Load balancing, neural
network, Virtual machines.

1. Introduction

As cloud computing is growing vastly and more
services and better results are demanded by the clients, so
for the cloud, load balancing has become a very interesting
and important research area. The area of Cloud computing
is getting more hot, at the same time, a more intensive task
waiting to be processed, how to allocate cloud tasks
reasonably so that the nodes in the cloud computing
environment can have a balanced load become more critical,
this task allocation strategy is called load balancing. Load
balancing has a significant influence on the performance in
cloud computing as load balancing aims to enhance
resource consumption, get the most out of throughput,
reduce response time, and avoid overload of any single
resource.

Better load balancing makes cloud computing more
efficient and improves user satisfaction. Therefore, “it is the
process of confirming the evenly distribution of work load
on the pool of system node or processor so that the running
task is accomplished without any disturbance”. The
objectives of load balancing are to maintain the stability of
the system, improves the performance, build the system
which is fault tolerance and provide future variation in the
system such as security updates, releasing up customers

time and resources for further tasks as well. Cloud load
balancing is a type of load balancing that is executed in
cloud computing which can be completed individually as
well as on grouped basis. There are various algorithms
designed for balancing the load among different tasks. After
completing the literature survey, it can be conclude that
most of the load balancing algorithms suggested so far are
complex. In Round robin scheduling algorithm method, it
considers only current load on each virtual machine. This is
static method of load balancing, static load balancing
method offer simplest simulation and checking of
environment but failed to model heterogeneous nature of
cloud.

The rest of this paper is organized as follows: in the
second section, the type of load balancing was discussed
which was broadly classified as static and dynamic load
balancing. Third section list various techniques proposed to
handle this problem. While fourth section provide related
work of the current approaches achieving load balancing of
cloud data centers will be introduced briefly. Research
problem is pointed out, and then the proposed problem is
formalized in detail.
The conclusion of the whole paper is made in the sixth
section.

2. Related Work

Song Ningninget. Al. In [2] Fog computing can
improve the resource utilization efficiency of the edge device,
and solve the problem about service computing of the delay-
sensitive applications. This paper researches on the framework
of the fog computing, and adopts Cloud Atomization
Technology to turn physical nodes in different levels into
virtual machine nodes. On this basis, this paper uses the graph
partitioning theory to build the fog computing's load balancing
algorithm based on dynamic graph partitioning. The simulation
results show that the framework of the fog computing after
Cloud Atomization can build the system network flexibly, and
dynamic load balancing mechanism can effectively configure
system resources as well as reducing the consumption of node
migration brought by system changes.

Liang Yu, et. al. in [3] paper, intend to reduce the
operational cost of cloud data centers with the help of fog

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.6, June 2025

136

devices, which can avoid the revenue loss due to wide-area
network propagation delay and save network bandwidth
cost by serving nearby cloud users. Since fog devices may
not be owned by a cloud service provider, they should be
compensated for serving the requests of cloud users. When
taking economical compensation into consideration, the
optimal number of requests processed locally by each fog
device should be decided. As a result, existing load
balancing schemes developed for cloud data centers cannot
be applied directly and it is very necessary to redesign a
cost-ware load balancing algorithm for the fog cloud
system. To achieve the above aim, we first formulate a fog-
assisted operational cost minimization problem for the
cloud service provider. Then, we design a parallel and
distributed load balancing algorithm with low
computational complexity based on proximal Jacobin
alternating direction method of multipliers.

Huang Peng et. Al. in [4] The description of
computational resources and their optimal allocation among
tenants with different requirements holds the key to
implementing effective software systems for such a
paradigm. To address this issue, a systematic framework for
monitoring, analyzing and improving system performance
is proposed in this research. Specifically, a radial basis
function neural network is established to transform
simulation tasks with abstract descriptions into specific
resource requirements in terms of their quantities and
qualities. Additionally, a novel mathematical model is
constructed to represent the complex resource allocation
process in a multi-tenant computing environment by
considering priority-based tenant satisfaction, total
computational cost and multi-level load balance. To achieve
optimal resource allocation, an improved multi-objective
genetic algorithm is proposed based on the elitist archive
and the K -means approaches.

Dazhao ChengGongz et. Al. in [5] paper, we
observe that the homogeneous configuration of tasks on
heterogeneous nodes can be an important source of load
imbalance and thus cause poor performance. Tasks should
be customized with different configurations to match the
capabilities of heterogeneous nodes. To this end, we
propose a self-adaptive task tuning approach, Ant that
automatically searches the optimal configurations for
individual tasks running on different nodes. In a
heterogeneous cluster, Ant first divides nodes into a number
of homogeneous sub clusters based on their hardware
configurations. It then treats each sub cluster as a
homogeneous cluster and independently applies the self-
tuning algorithm to them. Ant finally configures tasks with
randomly selected configurations and gradually improves
tasks configurations by reproducing the configurations from
best performing tasks and discarding poor performing
configurations. To accelerate task tuning and avoid trapping
in local optimum, Ant uses genetic algorithm during
adaptive task configuration.

Problem Identification
 In previous paper reinforced learning was used

which required to calculate feasible solution at first.
 Use of SJF increase the starvation in the system, as

some algorithm get high weighting time.
 Dynamic load balancing makespan time increases

as each section was treat individually.
 System does not learn previous similar type of

sequence pass by the algorithm.

3. Proposed Methodology

In order to make a general model which work on
various available data Indices a whole work is classify into
two steps first was to pre-process data as per input
environment than training of convolutional neural network
model was done. While second is to find correct set of
sequence by using CNN and TLBO algorithm. In this work
CNN was used as the learning model where input data was
processed fig. 1 steps.

Convolutional Neural Network Model

Convolutional Neural Networks (ConvNets or
CNNs) are a category of Neural Networks that have proven
very effective in areas such as pattern recognition and
classification. As input job matrix is convert into square
matrix and passed from the canny algorithm that find edge
portion where 1 is represent by edge while non-edge was
represent by 0. Fig. 1 represent block diagram of CNN
model. Input of matrix and output of matrix at different
level of block diagram can be obtained by below formulas:

𝑅′ =
(𝑅 − 𝐾 + 2 ∗ 𝑃)

𝑆
+ 1

𝐶′ =
(𝐶 − 𝐾 + 2 ∗ 𝑃)

𝑆
+ 1

Where R is number of row for input matrix at any level and
R’ is number of row of output matrix at that level. In
similar way C is number of row for input matrix at any
level and C’ is number of row of output matrix at that level,
k act as filter or kernel, p is padding and s is stride where
various block steps are explained below:

Convolution: ConvNets derive their name from
the “convolution” operator. The primary purpose of
Convolution in case of a ConvNet is to extract features
from the input image. Convolution preserves the input
matrix of job and its requirement. This work will go into the
mathematical details of Convolution here, but will try to
understand how it works over images. As discussed above,
every job requirement can be considered as a matrix of
values.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.6, June 2025

137

Fig. 1 Represent Block Diagram of GNNLB.

Stride: The F matrix over original block image by 1
pixel called ‘stride’ represent as s and for every position,
compute element wise multiplication and add the

multiplication outputs to get the final integer which forms
a single element of the output matrix.

Max-pooling: Pooling (also called subsampling or down
sampling) reduces the dimensionality of each feature map
but retains the most important information. Spatial Pooling
can be of different types: Max, Average, Sum etc.

Fig. 2 Flow Chart of proposed model.

In case of Max Pooling, define a spatial filter kxk

window and take the largest element from the rectified
feature map within that window. In practice, Max Pooling
has been shown to work better. Here shifting was done as
per stride value s and padding will be done as per p value.

Max-Pooling
K=2, S=2, P=0

ReLU
K=7, S=1, P=0

Convolution
K=3, S=1,

P=0

Convolution
K=5, S=1,

P=0

Max-pooling
K=3, S=1,

P=0

Feature Selection
64x64

Convolution
K=7, S=1, P=0

Convolution
K=3, S=1,

P=0

Convolution
K=1, S=1,

P=1

Convolution
K=5, S=1,

P=2

Neural Network
Learning

Concatenation

Convolution
K=3, S=2, P=0

Convolution
K=3, S=1, P=0

Iterate
T

times

Teacher Phase

Student Phase

Update Population

Generate
Population

Pre-Processing

Training Sequence
Dataset

Train CNN

Final Sequence

Y

N

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.6, June 2025

138

ReLu: ReLU is an element wise operation (applied per
pixel) and replaces all negative pixel values in the feature
map by zero. The purpose of ReLU is to introduce non-
linearity in our ConvNet, since most of the real-world data
we would want our ConvNet to learn would be non-linear
(Convolution is a linear operation – element wise matrix
multiplication and addition, so we account for non-linearity
by introducing a non-linear function like ReLU).

Steps of MCNN: Here whole model is divide into ten
layers where first nine are various combination of
convolution, ReLu and Max-pooling steps in each step fix
set of stride, padding and window size fig.1 represent all
working steps. Out of the last ninth layer of MCNN was
pass in the final or tenth layer which adjust the weight value
as per softmax function.

Pre-Processing: As the dataset available for processing is
present in different file format so, some pre-processing
steps are required for the conversion of data into
experimental environment. In this work data is inform of
vectors of the job timing for different machine. So reading
of vectors in string form and conversion of those strings in
proper numeric value is done in pre-processing. Collection
of all vector is done in a single matrix is also done here.

TLBO (Teacher Learning Based Optimization): In this
model TLBO (Teachers Learning Based Optimization
Algorithm was used for assigning the incoming process to
respected machine as per requirement. In this work genetic
algorithm TLBO is use because this takes two phase
learning. Main motive of this model is to reduce the dataset
size and increase the leaning accuracy of the neural network.
Here iteration of teacher and student phase was done while
two similar solutions were not obtained.

Generate Population: Here assume some possible solution
set that are the combination of the entire job which
represent there execution sequence. This is generating by
the random function.

PRand (m, n)
Where m is number of jobs and n is number of
chromosomes.

Fitness Function: In order to obtain good chromosome
from the bunch of available set fitness value of each
probable solution set is passed in this function. So fitness
value was returned. So makeSpan time is estimate was used
for finding the fitness value. This can be understand as let
solution set Cc fitness value need to calculate. Than time
taken by all machine to execute the each job in the batch is
total MakeSpan time. So sum of all job execution time is
term as the probable solution fitness value shown in
equation.

Jmax=Max_Execution_Time{ J1, J2, J3,………..Jn}

Teacher Phase: This phase was used for the crossover of
the chromosomes by the single best solution from the
population. Here best solution act as a teacher and its
selection is based on the minimum fitness value. In order to
do crossover operation random position probable solution
value is copied from the teacher chromosome and it was
replaced to the non-teacher chromosome. This improves the
population quality. This can be understood as let best
solution is Ccb than crossover operation done.

Cc [m, r] Ccb [b, r] where r=[1…n]

Student Phase: In this phase some random group of
chromosome were made automatically and then each group
was used for the crossover of the chromosomes by the
single best solution in that group. Here best solution act as a
teacher among other chromosomes and its selection is based
on the minimum fitness value. In order to do crossover
operation random position probable solution value is copied
from the teacher chromosome and it was replaced to the
non-teacher chromosome. Here each new chromosome was
cross verified that either its fitness value improved then
previous, if fitness improves than new chromosome is
included in the population and older one get removed. Vice
versa if fitness value not improves.

Training Vector
Here output of genetic algorithm was used as the output
desired position of input process requirement vector. Here
this combination of random input requirement and output is
learnby neural network. So input and output parameters are
combine to generate a training data for the Error Back
Propagation Neural Network.

Testing of (GNNLB)
Above trained neural network was used in GNNLB where
input process with their requirement of different machine is
pass in the trained neural network which generate the
population. For the Genetic algorithm as this population
was depend on the previous experience of genetic algorithm
so result to find the best sequence for process execution get
high. As instead of eq. 13 used in generate population
section work utilized

PTained_CNNM (m, n, D)

So difference between the expected with obtained is
consider as the error. This error need to be correct by
adjusting the weight values of each layer. So here forward
movement of the neural network is over and error back
propagation starts.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.6, June 2025

139

Training of GNNLB
Input: JSM // Input Job Sequence Matrix
Output: TNN // TNN: Trained Neural Network

1. PGenerate_Population()
2. While two solutions are not same
3. PTeacher_phase(P, JSM)
4. PStudent_phase(P, JSM)
5. Endloop
6. FSFitness(P,JSM) // FS: Final Sequence
7. PJSMPre-Processing(JSM) // PJSM: Processed

JSM(64x64)
8. BJSMBinary(PJSM) //BJSM: Binary JSM
9. BJSMConvolution(BJSM)
10. BJSMMax_Pooling(BJSM)
11. BJSMLRN(BJSM)
12. BJSM_LLevel_4(BJSM)
13. BJSM_LLevel_5(BJSM_L)
14. BJSMConcatenation(BJSM_L)
15. BJSMConvolution(BJSM)
16. BJSMConvolution(BJSM)
17. TNNEBPNN(BJSM, FS)

4. Experiment and Results

In order to conduct experiment and measure
evaluation results MATLAB 2012a version software is use.
This section of paper show experimental setup and results.
The tests were performed on a 2.40 GHz Intel Core i3
machine, equipped with 8 GB of RAM, and running under
Windows 10 Pro.

DatasetBenchmarks for basic scheduling problems e.
Taillard [10]. Following table show detail structure of
experimental dataset, where we use two job sequences.

Description of dataset with attributes [10, 11].
Attributes Set1 Set2

Number of Machines 5 10
Number of Jobs 20 20

Evaluation Parameter

Makespan is defined as the time required for processing all
thejobs or the maximum time required for completing a
given set of jobs. Minimization of makespan ensures better
utilization of the machines and leads to a high throughput
[7].

Jmax=Max { J1, J2, J3,………..Jn}

Total Flow Time is defined as the sum of completion time
of every job or total time taken by all the jobs. Totalflow
time of the schedule is computed using equation [8]:

𝐹 =෍𝐽௜

௡

௜

Relative Percent Deviation(RPD)

𝑅𝑃𝐷 = ൤
𝐺 − 𝐶∗

𝐶∗
൨ × 100

Where, G represents the global best solution obtained by
the GNNLB for a given problem and 𝐶∗represents the upper
bound value.

Trail Index It is defined as the average arrival rate of jobs
coming in system to execute in one sequence.

𝑻𝑰 =
𝟏

𝒏
෍𝑨𝒕

𝒏

𝒕ୀ𝟏

A is arrival time of tth job of sequence set.

Results

Table 1 Makespan of the GNNLB.
Techniques Set 1 Set 2

SJF-RL [1] 1420 1740

GNNLB 1131 1575

From table 1 is obtained that GNNLB has reduced the
makespan time of the dynamic load balancing of input
testing dataset. This was done because of use of two tier
population updating. Here in single iteration has improved
work probable solution twice.

Table 2 Comparison of proposed and previous work Total flow

Time.

Techniques Set 1 Set 2

SJF-RL [1] 23382 28187

GNNLB 13246 20235

From table 2 is obtained that GNNLB has reduced the total
flow time of the dynamic load balancing of input testing
dataset. This was done because of CNN for generating
initial population as this generates relevant probable
solution as per prior experience. As same kind of jobs may
get execute on the machine as a trending way. While in [1]
shortest job sequences engage one machine when some part
of job is time taken to complete the job.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.6, June 2025

140

Table 3 Comparison of RPD for MakesSpan.

Techniques Set 1 Set 2

SJF-RL [1] 23.4783 9.98736

GNNLB 1.65217 0.442478

From table 3was obtained that GNNLB has reduce the RPD
Makespanof the dynamic load balancing of input testing
dataset. This was done because of use of two tier population
updating. Here in single iteration has improved work
probable solution twice.

Fig. 3 Comparison of GNNLB and SJF-RL on the basis of arrival

time tail index.

Fig. 3 Comparison of GNNLB and SJF-RL on the basis of arrival

time tail index.

Above fig. 3 and 4 shows that proposed algorithm GNNLB
has low average completion time on different tail index as
compared to previous job scheduling algorithm. Here it was
also obtained that various job set used in experiment shows
low completion time of proposed work as job scheduling
for different machine was good.

Table 4 Comparison of RPD for Total flow Time.

Techniques Set 1 Set 2

SJF-RL [1] 63.5105 76.1688

GNNLB 7.37063 26.4688

From table 4were obtained that GNNLB has reduce the
total flow time RPD of the dynamic load balancing of input
testing dataset. This was done because of CNN for
generating initial population as this generates relevant
probable solution as per prior experience. As same kind of
jobs may get execute on the machine as a trending way.
While in [1] shortest job sequences engage one machine
when some part of job is time taken to complete the job.

5. Conclusions

Dynamic Load balancing help has help clouds to
handle multiple requests from various dimensions. Towards
this end many techniques came into existence for this work.
Here many researchers have already done lot of work based
on neural network classification. In this model TLBO
(Teachers Learning Based Optimization Algorithm was
used for assigning the input jobs. In this work genetic
algorithm TLBO is use because this takes two phase
learning. Main motive of this model is to find good
solution in any dynamic condition. Genetic algorithm
output is used for learning in ANN so this trained neural
network generates probable solutions which are closer to
desired one. Here result shows that GNNLB has improve
the accuracy by reducing the RPD. Here use of proper
training and rich input vector resultant neural network is
less time consuming. It was obtained that GNNLB has
reduced the Total Flow time. Here overall accuracy of the
propose work was also improved.

References

[1]. MianGuo, Quansheng Guan andWendeKe. “Optimal
Scheduling of VMs in Queuing Cloud Computing
Systems With a Heterogeneous Workload”. Digital
Object Identifier 10.1109/ACCESS.2018.2801319.

[2]. Song Ningning, Gong Chao, AnXingshuo. “Fog
Computing Dynamic Load Balancing Mechanism Based
On Graph Repartitioning” China Communication, IEEE
Volume 13 ISSUE 3, 2017.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.6, June 2025

141

[3]. Liang Yu, Tao Jiang, andYulongZou. “Fog-Assisted
Operational Cost Reduction For Cloud Data Centers”.
Date Of Current Version August 8, 2017. Digital Object
Identifier 10.1109/Access.2017.2728624.

[4]. Gongzhuang Peng, Hongwei Wang, Jietao Dong,
Heming Zhang. “Knowledge-Based Resource Allocation
For Collaborative Simulation Development In A Multi-
Tenant Cloud Computing Environment”. Ieee
Transactions On Services Computing (Volume: 11,
Issue: 2, March-April 1 2018)

[5]. Dazhao Cheng ; JiaRao ; YanfeiGuo ; Changjun Jiang ;
Xiaobo Zhou . “Improving Performance Of
Heterogeneous Mapreduce Clusters With Adaptive Task
Tuning”. Ieee Transactions On Parallel And Distributed
Systems (Volume: 28, Issue: 3, March 1 2017)

[6]. ShengjunXue, Wenling Shi and XiaolongXu. A
Heuristic Scheduling Algorithm based on PSO in the
Cloud Computing Environment. International Journal of
u- and e- Service, Science and Technology Vol.9, No. 1
(2016), pp.349-362.

[7]. Framinan, J.M. &Leisten, R. (2003). An efficient
constructive heuristic for flowtimeminimization in
permutation flow shops, Omega, Vol.31, 311-317.

[8]. Chandrasekaran, S.; Ponnambalam, S.G.; Suresh, R.K.
&Vijayakumar N. (2006). An application of Particle
Swarm Optimization Algorithm to Permutation
FlowshopScheduling Problems to Minimize Makespan,
Total Flowtime and CompletionTime Variance,
Proceedings of the IEEE International Conference on
Automation Scienceand Engineering, 2006 (CASE '06.),
pp-513-518, ISBN: 1-4244-0311-1, Shanghai,China,

[9]. Gowrishankar, K.; Rajendran, C. &Srinivasan, G.
(2001). Flowshop scheduling algorithmsfor minimizing
the completion time variance and the sum of squares of
completiontime deviation from the common due date,
European Journal of Operational Research, vol.132, No:
31, 643-665.

[10]. Taillard, E. (1993). Benchmarks for basic scheduling
problem, European Journal of Operational Research,
Vol.64, 278-285.

[11]. Li Chunlin, Zhou Min andLuoYoulong. “Efficient
Load-Balancing Aware Cloud Resource Scheduling for
Mobile User”. Computer And Communications
Networks And Systems The Computer Journal, 2017

[12]. Jia Zhao, Kun Yang, Xiaohui Wei, Yan Ding, Liang Hu,
GaochaoXu. “A Heuristic Clustering-based Task
Deployment Approach for Load Balancing Using Bayes
Theorem in Cloud Environment”. IEEE Transactions On
Parallel And Distributed Systems, June 2014.

[13]. S. M. Lau, Q. Lu, and K. S. Leung, “Adaptive Load
Distribution Algorithms for Heterogeneous Distributed
Systems with Multiple Task Classes,” Journal of Parallel
and Distributed Computing, vol. 66, no. 2, pp. 163-180,
2006.

[14]. V. Shrivastava, P. Zerfos, K. W. Lee, H. Jamjoom, Y. H.
Liu, and S. Banerjee, ”Application-aware Virtual
Machine Migration in Data Centers,” Proc. IEEE
INFOCOM, pp. 66-70, 2011.

[15]. ByungChulTak, Youngjin Kwon, and BhuvanUrgaonkar.
“Resource Accounting of Shared IT Resources in Multi-

Tenant Clouds”. 10.1109/TSC.2015.2453980, IEEE
Transactions on Services Computing

[16]. N. K. Chien, N. H. Son and H. D. Loc, "Load Balancing
Algorithm Based on Estimating Finish Time of Services
in Cloud Computing," ICACT, pp. 228-233, 2016.

