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Abstract 
This paper focus on allocation of cloud resources where two 
models were developed for this work. First was TLBO (Teacher 
Learning Based Optimization) genetic algorithms which find the 
correct position for the process to execute. Here some information 
used for analysis are total number of machines, memory, 
execution time, etc. So, outcome of the selected training process 
sequence were used as training input to the Convolutional Neural 
Network for learning. Here training was done in such a way that 
all set of features were utilized in pair with their process 
requirement and current position. For increasing the reliability of 
the work whole experiment was done on real dataset. Result shows 
that proposed GNNLB model has overcome various evaluation 
parameters on different scale as compared to previous approaches 
adopt by researchers. 
Keywords: 
Cloud Computing, genetic algorithm, Load balancing, neural 
network, Virtual machines. 
 
 
1. Introduction  
 

As cloud computing is growing vastly and more 
services and better results are demanded by the clients, so 
for the cloud, load balancing has become a very interesting 
and important research area. The area of Cloud computing 
is getting more hot, at the same time, a more intensive task 
waiting to be processed, how to allocate cloud tasks 
reasonably so that the nodes in the cloud computing 
environment can have a balanced load become more critical, 
this task allocation strategy is called load balancing. Load 
balancing has a significant influence on the performance in 
cloud computing as load balancing aims to enhance 
resource consumption, get the most out of throughput, 
reduce response time, and avoid overload of any single 
resource.  

Better load balancing makes cloud computing more 
efficient and improves user satisfaction. Therefore, “it is the 
process of confirming the evenly distribution of work load 
on the pool of system node or processor so that the running 
task is accomplished without any disturbance”. The 
objectives of load balancing are to maintain the stability of 
the system, improves the performance, build the system 
which is fault tolerance and provide future variation in the 
system such as security updates, releasing up customers 

time and resources for further tasks as well. Cloud load 
balancing is a type of load balancing that is executed in 
cloud computing which can be completed individually as 
well as on grouped basis. There are various algorithms 
designed for balancing the load among different tasks. After 
completing the literature survey, it can be conclude that 
most of the load balancing algorithms suggested so far are 
complex. In Round robin scheduling algorithm method, it 
considers only current load on each virtual machine. This is 
static method of load balancing, static load balancing 
method offer simplest simulation and checking of 
environment but failed to model heterogeneous nature of 
cloud.  

The rest of this paper is organized as follows: in the 
second section, the type of load balancing was discussed 
which was broadly classified as static and dynamic load 
balancing. Third section list various techniques proposed to 
handle this problem. While fourth section provide related 
work of the current approaches achieving load balancing of 
cloud data centers will be introduced briefly. Research 
problem is pointed out, and then the proposed problem is 
formalized in detail.  
The conclusion of the whole paper is made in the sixth 
section. 
 
 
2. Related Work 
 

Song Ningninget. Al. In [2] Fog computing can 
improve the resource utilization efficiency of the edge device, 
and solve the problem about service computing of the delay-
sensitive applications. This paper researches on the framework 
of the fog computing, and adopts Cloud Atomization 
Technology to turn physical nodes in different levels into 
virtual machine nodes. On this basis, this paper uses the graph 
partitioning theory to build the fog computing's load balancing 
algorithm based on dynamic graph partitioning. The simulation 
results show that the framework of the fog computing after 
Cloud Atomization can build the system network flexibly, and 
dynamic load balancing mechanism can effectively configure 
system resources as well as reducing the consumption of node 
migration brought by system changes. 

Liang Yu, et. al. in [3] paper, intend to reduce the 
operational cost of cloud data centers with the help of fog 
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devices, which can avoid the revenue loss due to wide-area 
network propagation delay and save network bandwidth 
cost by serving nearby cloud users. Since fog devices may 
not be owned by a cloud service provider, they should be 
compensated for serving the requests of cloud users. When 
taking economical compensation into consideration, the 
optimal number of requests processed locally by each fog 
device should be decided. As a result, existing load 
balancing schemes developed for cloud data centers cannot 
be applied directly and it is very necessary to redesign a 
cost-ware load balancing algorithm for the fog cloud 
system. To achieve the above aim, we first formulate a fog-
assisted operational cost minimization problem for the 
cloud service provider. Then, we design a parallel and 
distributed load balancing algorithm with low 
computational complexity based on proximal Jacobin 
alternating direction method of multipliers. 

Huang Peng et. Al. in [4] The description of 
computational resources and their optimal allocation among 
tenants with different requirements holds the key to 
implementing effective software systems for such a 
paradigm. To address this issue, a systematic framework for 
monitoring, analyzing and improving system performance 
is proposed in this research. Specifically, a radial basis 
function neural network is established to transform 
simulation tasks with abstract descriptions into specific 
resource requirements in terms of their quantities and 
qualities. Additionally, a novel mathematical model is 
constructed to represent the complex resource allocation 
process in a multi-tenant computing environment by 
considering priority-based tenant satisfaction, total 
computational cost and multi-level load balance. To achieve 
optimal resource allocation, an improved multi-objective 
genetic algorithm is proposed based on the elitist archive 
and the K -means approaches. 

Dazhao ChengGongz et. Al. in [5] paper, we 
observe that the homogeneous configuration of tasks on 
heterogeneous nodes can be an important source of load 
imbalance and thus cause poor performance. Tasks should 
be customized with different configurations to match the 
capabilities of heterogeneous nodes. To this end, we 
propose a self-adaptive task tuning approach, Ant that 
automatically searches the optimal configurations for 
individual tasks running on different nodes. In a 
heterogeneous cluster, Ant first divides nodes into a number 
of homogeneous sub clusters based on their hardware 
configurations. It then treats each sub cluster as a 
homogeneous cluster and independently applies the self-
tuning algorithm to them. Ant finally configures tasks with 
randomly selected configurations and gradually improves 
tasks configurations by reproducing the configurations from 
best performing tasks and discarding poor performing 
configurations. To accelerate task tuning and avoid trapping 
in local optimum, Ant uses genetic algorithm during 
adaptive task configuration.  

Problem Identification 
 In previous paper reinforced learning was used 

which required to calculate feasible solution at first. 
 Use of SJF increase the starvation in the system, as 

some algorithm get high weighting time. 
 Dynamic load balancing makespan time increases 

as each section was treat individually. 
 System does not learn previous similar type of 

sequence pass by the algorithm. 
 

3. Proposed Methodology 
 

In order to make a general model which work on 
various available data Indices a whole work is classify into 
two steps first was to pre-process data as per input 
environment than training of convolutional neural network 
model was done. While second is to find correct set of 
sequence by using CNN and TLBO algorithm. In this work 
CNN was used as the learning model where input data was 
processed fig. 1 steps.  

 
Convolutional Neural Network Model 

Convolutional Neural Networks (ConvNets or 
CNNs) are a category of Neural Networks that have proven 
very effective in areas such as pattern recognition and 
classification. As input job matrix is convert into square 
matrix and passed from the canny algorithm that find edge 
portion where 1 is represent by edge while non-edge was 
represent by 0. Fig. 1 represent block diagram of CNN 
model. Input of matrix and output of matrix at different 
level of block diagram can be obtained by below formulas: 

 

𝑅′ =
(𝑅 − 𝐾 + 2 ∗ 𝑃)

𝑆
+ 1 

𝐶′ =
(𝐶 − 𝐾 + 2 ∗ 𝑃)

𝑆
+ 1 

 
Where R is number of row for input matrix at any level and 
R’ is number of row of output matrix at that level. In 
similar way C is number of row for input matrix at any 
level and C’ is number of row of output matrix at that level, 
k act as filter or kernel, p is padding and s is stride where 
various block steps are explained below:  
 
Convolution: ConvNets derive their name from 
the “convolution” operator. The primary purpose of 
Convolution in case of a ConvNet is to extract features 
from the input image. Convolution preserves the input 
matrix of job and its requirement. This work will go into the 
mathematical details of Convolution here, but will try to 
understand how it works over images. As discussed above, 
every job requirement can be considered as a matrix of 
values.  
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Fig. 1 Represent Block Diagram of GNNLB. 
 

Stride: The F matrix over original block image by 1 
pixel called ‘stride’ represent as s and for every position, 
compute element wise multiplication and add the 

multiplication outputs to get the final integer which forms 
a single element of the output matrix.  
 
Max-pooling: Pooling (also called subsampling or down 
sampling) reduces the dimensionality of each feature map 
but retains the most important information. Spatial Pooling 
can be of different types: Max, Average, Sum etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2 Flow Chart of proposed model. 
 

 
In case of Max Pooling, define a spatial filter kxk 

window and take the largest element from the rectified 
feature map within that window. In practice, Max Pooling 
has been shown to work better. Here shifting was done as 
per stride value s and padding will be done as per p value. 
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ReLu: ReLU is an element wise operation (applied per 
pixel) and replaces all negative pixel values in the feature 
map by zero. The purpose of ReLU is to introduce non-
linearity in our ConvNet, since most of the real-world data 
we would want our ConvNet to learn would be non-linear 
(Convolution is a linear operation – element wise matrix 
multiplication and addition, so we account for non-linearity 
by introducing a non-linear function like ReLU). 
 
Steps of MCNN: Here whole model is divide into ten 
layers where first nine are various combination of 
convolution, ReLu and Max-pooling steps in each step fix 
set of stride, padding and window size fig.1 represent all 
working steps. Out of the last ninth layer of MCNN was 
pass in the final or tenth layer which adjust the weight value 
as per softmax function.  
 
Pre-Processing: As the dataset available for processing is 
present in different file format so, some pre-processing 
steps are required for the conversion of data into 
experimental environment. In this work data is inform of 
vectors of the job timing for different machine. So reading 
of vectors in string form and conversion of those strings in 
proper numeric value is done in pre-processing. Collection 
of all vector is done in a single matrix is also done here. 
 
TLBO (Teacher Learning Based Optimization): In this 
model TLBO (Teachers Learning Based Optimization 
Algorithm was used for assigning the incoming process to 
respected machine as per requirement. In this work genetic 
algorithm TLBO is use because this takes two phase 
learning.  Main motive of this model is to reduce the dataset 
size and increase the leaning accuracy of the neural network. 
Here iteration of teacher and student phase was done while 
two similar solutions were not obtained. 
 
Generate Population: Here assume some possible solution 
set that are the combination of the entire job which 
represent there execution sequence. This is generating by 
the random function.  

PRand (m, n) 
Where m is number of jobs and n is number of 
chromosomes.  
 
Fitness Function: In order to obtain good chromosome 
from the bunch of available set fitness value of each 
probable solution set is passed in this function. So fitness 
value was returned. So makeSpan time is estimate was used 
for finding the fitness value. This can be understand as let 
solution set Cc fitness value need to calculate. Than time 
taken by all machine to execute the each job in the batch is 
total MakeSpan time. So sum of all job execution time is 
term as the probable solution fitness value shown in 
equation. 

Jmax=Max_Execution_Time{ J1, J2, J3,………..Jn} 

Teacher Phase: This phase was used for the crossover of 
the chromosomes by the single best solution from the 
population. Here best solution act as a teacher and its 
selection is based on the minimum fitness value. In order to 
do crossover operation random position probable solution 
value is copied from the teacher chromosome and it was 
replaced to the non-teacher chromosome. This improves the 
population quality. This can be understood as let best 
solution is Ccb than crossover operation done. 
 
 

Cc [m, r] Ccb [b, r] where r=[1…n] 
 
Student Phase: In this phase some random group of 
chromosome were made automatically and then each group 
was used for the crossover of the chromosomes by the 
single best solution in that group. Here best solution act as a 
teacher among other chromosomes and its selection is based 
on the minimum fitness value. In order to do crossover 
operation random position probable solution value is copied 
from the teacher chromosome and it was replaced to the 
non-teacher chromosome. Here each new chromosome was 
cross verified that either its fitness value improved then 
previous, if fitness improves than new chromosome is 
included in the population and older one get removed. Vice 
versa if fitness value not improves. 
 
Training Vector 
Here output of genetic algorithm was used as the output 
desired position of input process requirement vector. Here 
this combination of random input requirement and output is 
learnby neural network. So input and output parameters are 
combine to generate a training data for the Error Back 
Propagation Neural Network. 
 
Testing of (GNNLB) 
Above trained neural network was used in GNNLB where 
input process with their requirement of different machine is 
pass in the trained neural network which generate the 
population. For the Genetic algorithm as this population 
was depend on the previous experience of genetic algorithm 
so result to find the best sequence for process execution get 
high. As instead of eq. 13 used in generate population 
section work utilized  
 

PTained_CNNM (m, n, D) 
 
So difference between the expected with obtained is 
consider as the error. This error need to be correct by 
adjusting the weight values of each layer. So here forward 
movement of the neural network is over and error back 
propagation starts. 
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Training of GNNLB 
Input: JSM // Input Job Sequence Matrix  
Output: TNN // TNN: Trained Neural Network 
 

1. PGenerate_Population()  
2. While two solutions are not same 
3. PTeacher_phase(P, JSM) 
4. PStudent_phase(P, JSM) 
5. Endloop 
6. FSFitness(P,JSM) // FS: Final Sequence 
7. PJSMPre-Processing(JSM) // PJSM: Processed 

JSM(64x64) 
8. BJSMBinary(PJSM) //BJSM: Binary JSM 
9. BJSMConvolution(BJSM) 
10. BJSMMax_Pooling(BJSM) 
11. BJSMLRN(BJSM) 
12. BJSM_LLevel_4(BJSM) 
13. BJSM_LLevel_5(BJSM_L) 
14. BJSMConcatenation(BJSM_L) 
15. BJSMConvolution(BJSM) 
16. BJSMConvolution(BJSM) 
17. TNNEBPNN(BJSM, FS) 

 
4. Experiment and Results 
 

In order to conduct experiment and measure 
evaluation results MATLAB 2012a version software is use. 
This section of paper show experimental setup and results. 
The tests were performed on a 2.40 GHz Intel Core i3 
machine, equipped with 8 GB of RAM, and running under 
Windows 10 Pro.  
 
DatasetBenchmarks for basic scheduling problems e. 
Taillard [10]. Following table show detail structure of 
experimental dataset, where we use two job sequences. 
 

Description of dataset with attributes [10, 11]. 
Attributes Set1 Set2 

Number of Machines 5 10 
Number of Jobs 20 20 

 
Evaluation Parameter 
 
Makespan is defined as the time required for processing all 
thejobs or the maximum time required for completing a 
given set of jobs. Minimization of makespan ensures better 
utilization of the machines and leads to a high throughput 
[7]. 
 

Jmax=Max { J1, J2, J3,………..Jn} 
 
Total Flow Time is defined as the sum of completion time 
of every job or total time taken by all the jobs. Totalflow 
time of the schedule is computed using equation [8]: 

𝐹 =෍𝐽௜

௡

௜

 

Relative Percent Deviation(RPD) 
 

𝑅𝑃𝐷 = ൤
𝐺 − 𝐶∗

𝐶∗
൨ × 100 

 
Where, G represents the global best solution obtained by 
the GNNLB for a given problem and 𝐶∗represents the upper 
bound value. 
 
Trail Index It is defined as the average arrival rate of jobs 
coming in system to execute in one sequence. 
 

𝑻𝑰 =
𝟏

𝒏
෍𝑨𝒕

𝒏

𝒕ୀ𝟏

 

 
A is arrival time of tth job of sequence set. 
 
Results 
 

Table 1 Makespan of the GNNLB. 
Techniques Set 1 Set 2 

SJF-RL [1] 1420 1740 

GNNLB 1131 1575 

 
From table 1 is obtained that GNNLB has reduced the 
makespan time of the dynamic load balancing of input 
testing dataset. This was done because of use of two tier 
population updating. Here in single iteration has improved 
work probable solution twice. 

 
Table 2 Comparison of proposed and previous work Total flow 

Time. 

Techniques Set 1 Set 2 

SJF-RL [1] 23382 28187 

GNNLB 13246 20235 

 
From table 2 is obtained that GNNLB has reduced the total 
flow time of the dynamic load balancing of input testing 
dataset. This was done because of CNN for generating 
initial population as this generates relevant probable 
solution as per prior experience. As same kind of jobs may 
get execute on the machine as a trending way. While in [1] 
shortest job sequences engage one machine when some part 
of job is time taken to complete the job.  
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Table 3 Comparison of RPD for MakesSpan. 
 

Techniques Set 1 Set 2 

SJF-RL [1] 23.4783 9.98736 

GNNLB 1.65217 0.442478 

 
From table 3was obtained that GNNLB has reduce the RPD 
Makespanof the dynamic load balancing of input testing 
dataset. This was done because of use of two tier population 
updating. Here in single iteration has improved work 
probable solution twice. 
 

 
Fig. 3 Comparison of GNNLB and SJF-RL on the basis of arrival 

time tail index. 

 
Fig. 3 Comparison of GNNLB and SJF-RL on the basis of arrival 

time tail index. 

Above fig. 3 and 4 shows that proposed algorithm GNNLB 
has low average completion time on different tail index as 
compared to previous job scheduling algorithm. Here it was 
also obtained that various job set used in experiment shows 
low completion time of proposed work as job scheduling 
for different machine was good. 
 

Table 4 Comparison of RPD for Total flow Time. 
 

Techniques Set 1 Set 2 

SJF-RL [1] 63.5105 76.1688 

GNNLB 7.37063 26.4688 

 
From table 4were obtained that GNNLB has reduce the 
total flow time RPD of the dynamic load balancing of input 
testing dataset. This was done because of CNN for 
generating initial population as this generates relevant 
probable solution as per prior experience. As same kind of 
jobs may get execute on the machine as a trending way. 
While in [1] shortest job sequences engage one machine 
when some part of job is time taken to complete the job. 
 
 
5. Conclusions 
 

Dynamic Load balancing help has help clouds to 
handle multiple requests from various dimensions. Towards 
this end many techniques came into existence for this work. 
Here many researchers have already done lot of work based 
on neural network classification. In this model TLBO 
(Teachers Learning Based Optimization Algorithm was 
used for assigning the input jobs. In this work genetic 
algorithm TLBO is use because this takes two phase 
learning.  Main motive of this model is to find good 
solution in any dynamic condition. Genetic algorithm 
output is used for learning in ANN so this trained neural 
network generates probable solutions which are closer to 
desired one. Here result shows that GNNLB has improve 
the accuracy by reducing the RPD. Here use of proper 
training and rich input vector resultant neural network is 
less time consuming. It was obtained that GNNLB has 
reduced the Total Flow time. Here overall accuracy of the 
propose work was also improved. 
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