
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

119

Manuscript received July 5, 2025
Manuscript revised July 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.7.12

Predicting Dynamic Replication based on Fuzzy System in Data

Grid

Mahnaz Khojand1, Mehdi Fatan2, Sevin Ashrafii3, Vahideh namaki4

1 Islamic Azad University of Zanjan, Zanjan, Iran
2 Departement of Computer Engineering, Islamic Azad University of Gazvin, Gazvin, Iran

3 Departement of Computer Engineering, Islamic Azad University of Arak, Arak, Iran
4 Departement of Computer Engineering, Islamic Azad University of shabestar, shabestar, Iran

Abstract
Data grid replication is an effective method to achieve efficient
and fault tolerant data access while reducing access latency and
bandwidth consumption in grids. Since we have storage limitation,
a replica should be created in the best site. Through evaluation of
previously suggested algorithms, we understand that by blind
creation of replications on different sites after each demand, we
may be able to improve algorithm regarding response time. In
practice, however, most of the created replications will never be
used and existing resources in Grid will be wasted through the
creation of unused replications. In this paper, we propose a new
dynamic replication algorithm called Predictive Fuzzy Replication
(PFR). PFR not only redefines the Balanced Ant Colony
Optimization (BACO) algorithm, which is used for job scheduling
in grids, but also uses it for replication in appropriate sites in the
data grid. The new algorithm considers the history usage of files,
files size, the level of the sites and free available space for
replication and tries to predict future needs and pre replicates them
in the resources that are more suitable or decides which replica
should be deleted if there is not enough space for replicating. This
algorithm considers the related files of the replicated file and
replicates them considering their own history. PFR acts more
efficiently than Cascading method, which is one of the algorithms
in optimized use of existing replicas.
Keywords:
Data Grid, Cascading method, Fuzzy Systems, Cluster

1. Introduction

Grid system is one of the various kinds of
distributed systems that have been designed until now.
Grids can be classified into computational Grids and Data
Grids [1]. Computational grids are developed for managing
and handling computational tasks and Data Grids manage
huge data files and data sharing [2]. We focus here on the
data distribution aspect of a grid. With today’s great
projects and large datasets, Data Grids need large
computational power and data storage resources [3]. Data
Grids use the storage resources that are distributed in the
whole world for the evaluation of these projects and the
management of large amount of data that these projects
need [4, 5, 6]. Because of geographical distribution of data

resources, data transmission is unavailable. Data
transmissions, especially long and large ones, cause time
latency, bandwidth consumption and consequently decrease
in performance. Data replication is one of the solutions for
this problem [2, 7, 8, 9, 10, 11]. Concept of replication
means making several copies of one identical data on
different sites and in different places. Through such an
action, availability along with reliability of the system
increases. Furthermore, it helps to create load balancing in
the system [2, 18].

Replication is done in two different ways; static

and dynamic. In static mode, copying is independent from
client’s behaviour and is unchangeable. However, in
dynamic copying mode, changes that are resulted from the
environment have direct influence on production places and
on their creation or deletion [13]. Since grid structure is
always changing, we make use of dynamic methods to copy.
If we copy all data in all sites, we will have the highest
access-rate. However, because of the storage limitation, this
kind of replicating is not possible. The most important issue
in replicating is introducing proper strategies to determine
the best time and the best place of creation and deletion of
the replicas.

Since we face memory limitation, one of the most
important challenge regarding Grid environment
optimization is to increase the percentage of average
accessibility to replicas and consequently to optimize the
memory which is used by replicas in a way that when a
replica is created and takes up a place, we should make the
most use of it. Through evaluation of previously suggested
algorithms, we understand that by blind creation of replicas
on different sites after each demand, we may be able to
improve algorithm regarding response time, but in practice,
most of the created replicas will never be used and existing
resources in Grid will be wasted through the creation of
unused replicas.

Our proposed algorithm Predictive Fuzzy
Replication (PFR) is a new dynamic method in Multi-Tier
Data Grid Environment. In this paper, we redefine the
Balanced Ant Colony Optimization (BACO) algorithm [12],

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

120

which is used for job scheduling in Computing grids, and
use it for replication in appropriate sites in the data grid. In
BACO, each job is an ant and ants are sent to search for
resources. A job in BACO is a file; a resource is a node in
our method. PFR considers the history usage of files and
tries to predict future need and pre replicates them in the
resources that are more suitable or decides which replica
should be deleted if there is not enough space for replicating.
This algorithm considers the related files of the replicated
file and replicates them considering their own history.
Creating copies in appropriate sites, before users’ requests,
causes access delay decreases significantly. Contrary to
most of the previous algorithms, which only consider leaf
nodes, PFR is used all over the Grid. Since it is impossible
to examine all nodes in PFR due to the wide amount of
nodes, in this article, we will examine algorithm rather than
discussing the nodes on cluster levels.

Our proposed algorithm, PFR, tries to create more
optimized replications. PFR acts even more efficiently than
Cascading method, which is one of the algorithms in
optimized use of existing replicas.

The rest of the paper is organized as follows. In
section 2, we report some related research work on
replication strategy in Data grid. Section 3 introduces our
algorithm, results are presented in section 4, and section 5
offers future works and concludes the paper.

2. Related Work

Ranganathan in [13] introduced five different replication
strategies for three different kinds of access patterns.

These strategies are:
• No Replication or Caching: No replication is created in

any node.
• Best client: The client that has the maximum request for

a file is identified (Best client) and that file is replicated
on it.

• Cascading: When the request number for a file exceeds
the threshold, the file is replicated at the next level.

• Caching and cascading: This strategy acts like cascading
method with this difference that the requested file is
replicated in the client node too.

• Fast spread: after file demand, the file is copied in all the
existing nodes on the path from the root to the client.
The access patterns that they introduced are:

• Temporal Locality: Recently accessed files with high
probability will to be accessed again.
• Geographical locality: Files recently accessed by a
client with high probability will be accessed by nearby
clients.
• Spatial Locality: Files related to the recently accessed
file will be accessed too.

Our proposed method uses spread strategy and
considers temporal, geographical and spatial localities.

BHR [26] determines network layers in form of
various regions. Bandwidth among sites inside the same
region is much higher than bandwidth among different
regions. Therefore, if the requested file is fetched from a site
which is in another region, the response time will highly
increase. If when a file is requested, the file doesn’t exist in
the respective site, in case the site has enough space, the file
will be copied in it. Otherwise, if the file exists in another
site in that region, the file won’t be saved. If the file isn’t
found in that region in that region, those files which have
been copied more than once in the sites in that region are
identified and then, the files that have recently been used
less are deleted until we have enough space to copy the new
file. MBHR [3] is a modified version of BHR which
considers geographical and temporal locality as well and
tries to create all copies in one region and in the sites that
are being accessed more. We have used spatial locality in
addition to temporal and geographical locality and
clustering concept instead of regional network.

Sonali Warhade in [25] uses the graph topology to

form the grid system. In his method, through raising the
modified BHR (MBHR) methodology, he has a tendency to
project a dynamic algorithmic program for data replication
in data grid system. This algorithmic program uses variety
of parameter for locating replicating appropriate web site
wherever the file is also needed in future with high
likelihood. The algorithmic program predicts future wants
of replicated appropriate grid web site square measure
supported file access history.

 Peter proposed a method in [10], the file is divided
in to blocks. If there is a need for replication only the needed
block is replicated in the site so it saves the storage space
and makes the parallel access possible to replica. This
method does not consider spatial locality. The authors in [20]
studied data replicating in multi-tier data grid and suggested
two simple bottom-up and aggregative bottom-up
replicating algorithm. The main idea of these methods is
that they identify the popular files and replicates those files
in closest place to the client, like in its parent. In this way,
each node is considered like a server for its children. The
copy trend in this method is a bottom-up process. A
threshold is considered in SBU. If the demand rate for a file
by a client exceeds that limit, a copy will be created in the
nearest place on a higher level than the client node. SBU
encounters problems if it takes all the system in to
consideration. ABU is offered as a solution to this problem.
Since it is logical, when a file is demanded repeatedly by
most of the children of a node, a copy is created in the parent.
ABU aggregates the history of all accesses to files from all
nodes on each level, finds their relationships with each other
and on that basis, does the copying until it gets to the root.
According to the response time, ABU is better than SBU

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

121

and fast spread. In SBU and ABU, files access number is a
scale for identifying popular files. One of the related
problems is that one file was perhaps visited frequently
before, but although there is no request for the file now, the
copy of the file is produced on the basis of its history. This
problem was discussed in [21] and the solution is an
algorithm called Last Access Largest Weight. The most
important point in LALW is that it gives records different
weights, on the basis of their age. In fact, LALW gives
higher weights to the new records.

Tao Wang in [26] proposed a method, named FLSDR,
a theoretical model of access latency optimization with
replication, which complements the blank space.
Subsequently, he proposed a carefully designed dynamic
replication consisting of three algorithms. These logarithms
are as follows: replica selection algorithm, replica layout
algorithm and replica replacement algorithm. Replica
selection algorithm selects the optimal replica with a
hierarchical time cost based on the derivation of the
theoretical model. Replica layout algorithm selects the
optimal node for placing the replica based on the spatio-
temporal locality of data access. Replica replacement
algorithm, in which the fuzzy logic system is introduced
originally, deletes replica when the available storage space
is insufficient. FLSDR achieves better performance in
comparison with other algorithms in terms of mean job
execution time, computing resource usage, number of data
scheduling between clusters and number of replicas.
PHFS [2] is a dynamic replication method which predicts
replication places before demand by using spatial locality
and spread strategy. PHFS uses data mining methods to find
the relationship between files along with the percentage of
relationship among them. When a file is demanded for the
first time, in addition to the file itself, related files, are
replicated in lower levels. This is done in a way that the files,
which have lower dependency, are only replicated in higher
levels but files with higher dependency are also replicated
in lower levels. In case of later demands, replication is done
base on the priority attributed to files regarding their usage
rate in the past. In our own algorithm, we have also tried to
make accessibility more optimized through replicating the
related files. The difference, however, is that we consider
all over the grid in our algorithm and always apply
algorithm on all nodes and files. To replicate related files,
in addition to the percentage of their relationship to the main
selected file, we also consider the characteristics of files in
order to be replicated in lower levels [2].

Through using ACO algorithm, BACO algorithm
has offered a method to schedule jobs. Supposing that each
job is an ant, the ants are sent to search for resources. While
trying to reduce computation time to run jobs through local
and global updates, this algorithm controls load balancing
in Grid resources and uses a matrix to show computation
power of each resource for each job [12]. We generalize this

algorithm from Computing Grid to Data Grid, and we use
this matrix to determine the best place to replicate files.

Grid can have different architectures. One of the
popular architectures is multi-tier structure. This
architecture offers a simple structure to apply replicating
methods. Multi-tier architecture in a data grid is a tree-like
structure in which the nodes connect hierarchically and
according to tree topology limits.

Multi-Tier architecture was first proposed by
MONARC project [14] for the Large Hadron Collider (LHC)
[15]. European Organization for Nuclear Research (CERN)
[16] is working on LHC. Multi-Tier architecture is 5-layer
architecture on whose 0 layer, CERN is situated, all data are
placed in CERN. Its first layer includes national centers.
The second layer is sub-group of the first and includes
regional centers. The third layer consists of industrial
centers and work groups. Desktops and end users are in the
fourth layer. We have used this architecture for
implementation of our proposed algorithm.

3. Predictive Fuzzy Replication

In this section, a new dynamic replication method in

the multi-tier data grid called Predictive Fuzzy Replication
(PFR) will be described. PFR considers the history usage of
files, files size, the level of the sites in multi-tier architecture
and free available space for replication and tries to predict
future needs and pre replicates them in the resources that are
more suitable. In this paper we have used CERN [16] Multi-
Tier data grid for the implementation of PFR method.

Due to great number of nodes in g rid, instead of

discussing sites individually, we discuss clusters and
instead of considering all available sites, we will only
consider cluster headers related to each cluster. Cluster
header is a node, which has a higher computational power
and storage capacity, compared to other nodes (Figure 1).
Each cluster has only one cluster header, which keeps the
information related to the sites that exist in its own area
along with places for present replications. Each cluster
header has a replication manager. The replicating manager
is responsible to control replications inside the cluster and
in case replication is needed, it chooses the best site in its
respective cluster to accept the replication.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

122

Figure 1: Clustering in data grid

In order to cluster the nodes, clustering algorithms
[25] or graph partitioning algorithms [24] can be used. We
have used a simple algorithm here in a way that nodes
whose distance from each other is closer than the limit 𝛼
and which do not belong to other clusters, are grouped in
one cluster. α is a user defined value here.

In other words, if we show the existing sites with an
index of S, M is defined as Universal Set, which contains
all other sites. R is a set of nodes that belong to cluster A
(Eq. 1, 2). Consider Table (1) for more information.

Table 1: The list of Eq. 1,2. Parameters.
M Universal Set

S
An Existing sites are

shown with an index of S

R
set of nodes that belong to

cluster A
X a node in the grid
A is a node in cluster A

cl denotes cluster A

𝑀 = {𝑆ଵ, 𝑆ଶ, … , 𝑆}

(1)

𝑅 = {𝑥 |𝑥 𝜖 𝑐𝑙 ∧ (|𝑎 − 𝑥| < 𝛼 ∧ 𝑥
∉ (𝑀 − 𝑐𝑙)}

(2)

In Multi-Tier data grid nodes that exist in upper levels of
hierarchical tree, have higher data storage capacity and

computing power than lower nodes. We have considered all
three access patterns with temporal, geographical and
spatial locality in our method. We take all our data as read
only, that is, we do not need to update the replications.
To find the best place for replication in data grid, PFR uses
a method similar to the method in BACO, the way used to
find the best resource for running the job. In addition, PFR
uses Replica Indicator (RI) matrix for showing the relation
between the nodes and the files, like BACO that uses a
matrix for showing the relation between the resources and
the jobs.

The rest of the section is organized as follows. In 3.1,
we describe how to make replica indicator matrix. 3.2
describes making Dependency matrix. ,

PFR algorithm are presented in 3.3, and 3.4 offers an
architecture for PFR and 3.5 shows an example of our
proposed algorithm.

3.1 Making Replica Indicator matrix

In the suggested algorithm, to make matrix Replica

Indicator (RI), if we have m nodes and n data (here, node
means cluster header), we will have a 𝑚 × 𝑛 matrix whose
rows show the nodes and whose columns show our data.
Each entry of matrix RI shows the tendency for the
replication of file n in node m. As the value gets higher, the
probability of the replication of file n in node m will be
higher. Because grid system is a dynamic one and is always,
changing and we have limited information of the system,
every moment we are not able to have accurate information
from the whole system and also we can’t predict the
behaviour of the system. This limited information with the
fuzzy system can be used to define some general rules for
the system that are always true, so for defining the entries
of RI matrix, we use Fuzzy rules.

Through acquiring the matrix entries of each file to
each node, a matrix like the following will be formed.

 𝑓ଵ 𝑓ଶ … 𝑓

𝑅𝐼 =

𝑛ଵ

⋮
𝑛

𝑅𝐼ଵଵ 𝑅𝐼ଵଶ … 𝑅𝐼ଵ

⋮ ⋮ ⋮ ⋮
𝑅𝐼ଵ 𝑅𝐼ଶ … 𝑅𝐼

൩

Matrix RI's entries are determined based on Fuzzy methods,
are dependent on Usage-ratio, Level, Node size, and File-
size. File-size indicates the demanded file size. Node-size is
the available free space of the node that is considered for
accepting replica. Here, it is the aggregation of the free
space of the nodes in one cluster.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

123

Since it is possible that the number of demands for files was
many in the past but is less now, we also like PHFS[2] use
the usage ratio criterion to determine the access history to
the file of a node (Eq. 3, 4, 5). Consider Table 2.

Table 2: The list of Eq. 3, 4, 5 parameters.

Usage-ratio Usage ratio
Curr-usage Current iteration usage
Prev-usage Previous iteration usage

𝑢𝑠𝑎𝑔𝑒 − 𝑟𝑎𝑡𝑖𝑜 = 𝑢𝑠𝑎𝑔𝑒 − 𝑟𝑎𝑡𝑖𝑜

∗
𝐶𝑢𝑟𝑟 − 𝑢𝑠𝑎𝑔𝑒

𝑃𝑟𝑒𝑣 − 𝑢𝑠𝑎𝑔𝑒

 (3)

If the value of previous usage equals 0, the
Formula will be:

𝑈𝑠𝑎𝑔𝑒 − 𝑟𝑎𝑡𝑖𝑜 = 𝑈𝑠𝑎𝑔 − 𝑟𝑎𝑡𝑖𝑜 + 𝐶𝑢𝑟𝑟
− 𝑢𝑠𝑎𝑔𝑒

(4)

If current usage equals 0:

𝑈𝑠𝑎𝑔𝑒 − 𝑟𝑎𝑡𝑖𝑜 = 𝑈𝑠𝑎𝑔𝑒 − 𝑟𝑎𝑡𝑖𝑜/2 (5)

Since in the nodes of higher levels, memory capacity and
computational power is more than nodes of lower levels, to
determine RI, we consider the node level as well in a way
that the more a node is in lower level, fewer replications it
will accept. Node-size in each phase shows the amount of
free storage space in each node.
In section 3.1.1, the usage rules for Fuzzy system are
defined shortly.

3.1.1 Fuzzy Inference system

Fuzzy inference system ، is a useful tool for
modelling human knowledge, especially if the knowledge
about the system is limited to linguistic rules. The aim of
this project is making a knowledge base system to infer RI
values. Our knowledge about the desired system is very
limited, to design a fuzzy system to generate RI values, two
fuzzy rules are used which described the RI function in a
simple way. The inference system should has a direct
relation with Usage-ratio and Node-size and an opposite
relation with File-size and the Node-level. Fuzzy
intersection operators, are not useful for systems with low
number of rules. Since our function is not highly sensitive
to changes of the value of input variables, average operators
can be used instead of intersection operators with lower

rules. The fuzzy inference system in form of Eq. 6 uses
Mamdani fuzzy product engine using singleton fuzzifier
and center of average defuzzifier [22]. Table 3 shows the
definition of symbols in Eq. 6 in detail.

𝑓(𝑥) =
∑ 𝑦ି (Πୀଵ

 (𝜇

(𝑥)))ெ
ୀଵ

∑ (Πୀଵ
 (𝜇

(𝑥)))ெ
ୀଵ

(6)

Table 3: The list of Eq. 6 parameters.

y୪
Center of membership functions for output
variable.

𝜇

 Membership functions of input variables.

𝑀 Number of rules in fuzzy system.

Π Fuzzy intersection method.

𝑥 Input variable.

The only difference between the proposed fuzzy Inference
System, which is shown in Eq. 7, in comparison with Eq. 6,
is using fuzzy averaging operator for aggregation of
membership functions. Consider Table 4 to know more
about the variables in Eq. 7.

𝐼𝐹𝐴𝑣𝑔ி௨௭௭௬ ൬
Level is Low, File − size is Low , Usage is High,

 Node − size is High
൰

𝑇𝐻𝐸𝑁 𝑅𝐼 𝑖𝑠 𝐻𝑖𝑔ℎ

𝐼𝐹𝐴𝑣𝑔ி௨௭௭௬ ൬
Level is High , File − size is High , Usage is Low

 , Node − size is Low
൰

𝑇𝐻𝐸𝑁 𝑅𝐼 𝑖𝑠 𝐿𝑜𝑤

Avg୳୷(a, b) = 𝜆 𝑀𝑎𝑥(𝑎, 𝑏)+ 𝜆 𝑀𝑖𝑛(𝑎, 𝑏)
𝜆 ∈ [0 1]

Table 4: The list of Eq. 7 variables.

File-size Size of file
Node-size Size of node
Level Level of tree
Usage Usage ratio

Finally, Eq. 8 is the proposed fuzzy system and Table 5
shows the definition of symbols in detail.

𝑓(𝑥) =
∑ 𝑦 (Avg୳୷ୀଵ

 (𝜇

(𝑥)))ெ
ୀଵ

∑ (Avg୳୷ୀଵ

 (𝜇
(𝑥)))ெ

ୀଵ

(8
)

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

124

Table 5: The list of Eq. 8 parameters.

y୪
center of membership functions for output
variable

𝜇

 Membership functions of input variables.

𝑀 Number of rules in fuzzy system.

Avg Fuzzy averaging method.

𝑥 Input variable.

The input variables of our fuzzy inference system are:
Usage-ratio, Node-size, Level, File-size, and RI as output
variable. Two membership functions of triangle type are
LOW and HIGH which considered for each input and
output variables. Figure 2 indicates the membership
functions with upper and lower limits for all input variables.

Figure 2: Membership functions for all input variables, in the proposed fuzzy inference system.

Figure 3: Membership functions for output variable RI in proposed fuzzy inference system.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

125

3.2 Making dependency matrix

In addition to matrix RI, we also need a dependency

matrix 𝑛 × 𝑛 in this algorithm, which shows the degree of
dependency of one file to other files. Information server is
a component in the root of multi-tier tree and gathers all
system information. The information server considers files
and their information is stored in log files. Information
server uses the information in log files and finds the
dependency among files by mining the log files using data
mining methods. Dependency matrix is made from the
gained information in this phase. We suppose that we had
these dependencies from the beginning. This paper does not
include the ways of using mining techniques.
 If we take the dependency ratio as 𝛽 , then, 0 ≤ 𝛽 ≤ 1.
Dependency of each file with itself equals 1. The entries of
main axis of dependency matrix are 1.

3.3 PFR algorithm

After each demand, the respective usage history of the
demanded file in the node that has demanded is updated and
at the end of certain time interval, the RI matrix is
recalculated. It should be noted that in each time intervals,
several demands can be made. Short time intervals cause an
increase in adaptability of the system but impose more
overheads to the system. Determination of optimized time
interval length for different situation will be studied in
future work. At the end of each time interval, the highest
entry of RI matrix in which a replication of related file does
not exit is chosen. If the chosen entry’s usage ratio is higher
than a threshold, called 𝛾 , and if there is enough space,
algorithm recognizes that file n in node m should be
replicated. Here, the amount of 𝛾 is considered as 2.
However, through having a valid data set and learning them
via neural network, a dynamic and efficient 𝛾 is achieved
for files with different sizes in different levels. Achieving
the optimal value of 𝛾 is of future works. The respective file
is replicated in nodes of different tiers in Multi-Tier Data
Grid from root to the node m using Fast Spread strategy. In
the next phase in dependency matrix, the files whose
dependency with file n is between 0.5 and 1 are chosen
(consider lines 9 to 14 in Figure 7). Suppose that n is the
replicated file and n+1 is the file related to it. In the column
related to file n+1, the existing nodes in the path of
respective node for file n, i.e. its ancestors, in RI matrix are
considered. 𝑆 = {𝑠ଵ, 𝑠ଶ, … , 𝑠} are the nodes on the path of
root to the node 𝑚 and 1 ≤ 𝑗 ≤ 𝑚. The highest 𝑅𝐼ௌೕ×(ାଵ)

is chosen and we replicate up to that node in the fast spread
way (consider lines 15 to 30 in figure 7).

Through this method, not only the files related to m are
considered but also the history of the file itself, files size,
the level of the sites and free available space for replication
are taken in to consideration. This is done for all the chosen
files of dependency matrix.

The optimizer, is a component in the root of multi-tier
tree, and controls the algorithms related to replications. If
the file n becomes a candidate to be replicated in a node
where there is not enough space for the replication of this
file, the optimizer provides enough space through deleting
the replicas that have lower RI in that node until the time we
have enough space for replication. PFR, beside the ratio of
file dependencies, considers the characteristics of the file
itself for replication.

Figure 3: The algorithm of PFR.

PFR Algorithm

1 While(1)

2 {

3 If(time interval finished)

4 {

5 For(each request)

6 “Calculate access rate for the requested file

7 and the requester node.”

8 }

9 Define the maximum entry in RI matrix.

10 While(there is not enough replication space)

11 {

12 Remove the replica that has minimum RI.

13 }

14 Replicate the related file of the maximum entry

 using fast spread strategy.

15 Find the files that their dependency to the chosen

 file is more than 0.5.

16 For(each file that its dependency is more than 0.5)

17 {

18 “Find the maximum RI for each file and the

19 nodes that are in the path between chosen

20 node and the root.”

21 While(there is not enough replication space)

22 {

23 Find the replica that has min RI in the node.

24 If (min RI > max RI of dependent file)

25 Go to line 30.

26 else

27 Remove the replica that has minimum RI.

28 }

29 Replicate the file in the node of maximum entry using

30 fast spread strategy.

31 }//end of for

32 }//end of while

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

126

3.4 Architecture model of PFR

We want to do replication before any demand for
files. This algorithm tries to replicate the best file on the
most suitable node before demand. As already mentioned,
to do this, we need to access history of files and know file
dependences on each other. Our architecture consists of
three major parts: Grid Resources, Information Server and
Replication Manager (Figure 8).

Grid Resources: include computational resources,
processors, storage resources and services.
Information Server: gathers all system information and
has three parts: Clustering phase, File Observation phase
and Analysis phase.
Clustering phase: as already mentioned, a great number of
sites and computational resources, have participated in Grid
environment. Therefore, the matrix resulting from all nodes
cannot be in practice. We have considered nodes that are
close to each other as a cluster. Clustering phase is made up
of two parts:
A: Monitoring: in the monitoring phase, the Grid’s
information is gathered using NWS (Network Weather
Service) [27].
B: Clustering: using the gathered information from the
observation phase, the algorithm related to clustering is
applied.
File observation phase: gathers information related to files.
This information includes files size and their dependency to
each other.
Analysis phase: This phase uses the information resulted
from file observation phase and applies data mining
methods to find the dependency among files, and then stores
them in a file called log file.
Replication Manager: includes a replicating catalogue in
which information related to files is kept. Moreover,
replication manager includes a part named Replication
optimizer where algorithms related to replications are done.
Decision-making about time and method of creation,
management and deletion of replicas is a responsibility of
this part. The number of demands for each file by the sites
of each cluster is kept here. RI matrix and the dependency
matrix, which is made of log file in analysis phase, are kept
in this place.

As mentioned before, due to great number of sites in
grid, instead of discussing sites individually, we discuss
clusters and instead of considering all available sites, we
will only consider cluster headers related to each cluster.
Cluster header is a node in the cluster, which has a higher
computational power and storage capacity, compared to
other nodes. It has the role of a server and a central unit in
the cluster. All of the nodes in the cluster are connected to
the cluster header and are in contact with each other via it.
Each cluster header separately has a replication manager.

RM in each cluster header keeps the information related to
all replications present in its own cluster along with the
demands for each file by each site.

Figure 4: System Architecture

Each Replica Manager in each cluster header has a

Replica Optimizer. Through use of simple algorithms, RO
in each cluster header decides in which site the replication
should be placed or from which site it should be deleted and
in which site it should be replaced. RO is responsible to
control that each cluster has only one replication of each file.

3.5 An example of proposed algorithm

In this example we supposed there is enough space for
creating replica in each node and there are six cluster
headers and five files in the root.
Suppose our RI and dependency matrixes are as follows:

RI =

⎣
⎢
⎢
⎢
⎡
3.91
3.20

3.96
3.40

3.80 3.90

2.70
2.78
2.60

 4.71 4.16
4.10 5.00
4.60 4.12

3.60 3.70 2.40 4.40 3.90
3.91
4.90

3.96
3.20

2.70
5.10

4.70
3.30

4.16
4.30 ⎦

⎥
⎥
⎥
⎤

dependency =

⎣
⎢
⎢
⎢
⎡

1
0

0.7

0.8
1

0.7

0.2
0.9
1

0.3
0

0.4

0.8
0

0.4
0.5 0 0.2 1 0.2
0.4 0.6 0.3 0.6 1 ⎦

⎥
⎥
⎥
⎤

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

127

The initial status of the grid is as follows:

Figure 5: Before Replication

After formation of RI matrix, at the end of each time
interval, the biggest entry of RI matrix is chosen; it equals
𝑚𝑎𝑥 = 𝑅𝐼×ଷ here. Since γ is 2, if the usage ratio of 𝑅𝐼×ଷ
is lower than 2, we choose the second higher entry which is
𝑅𝐼ଶ×ହ here. The usage ratio of 𝑅𝐼×ଷ is 2; then we choose
this.

So, file 3 is replicated from root to node 6 in fast spread
form. Regarding hierarchical tree, path= {6, 2} (Figure 10).

Figure 6: After replicating File 3, from root to node 6, in

fast spread way.

In the next phase in dependency matrix, the files whose
dependency with file 3 is between 0.5 and 1 are determined.
Dependency files = {1, 2}

Now, for each of in the Dependency files set, we
consider RI for each of the nodes that are on the path
between root and node 6. For the entry related to each node
which is bigger, file is replicated from root to that node in
fast spread way.

𝑅𝐼×ଵ > 𝑅𝐼ଶ×ଵ
So file 1 should be replicated from root to node 6 in fast
spread way (Figure 11).

Figure 7: After replicating File1, from root to node 6, in

fast spread way.

Also, 𝑅𝐼×ଶ < 𝑅𝐼ଶ×ଶ
So file 2 should be replicated from root to node 2 in fast
spread way (Figure 12).

Figure 8: After replicating File 2, from root to node 2, in

fast spread way.
As you see, by using PFR method, even the dependent files
are not replicated only based on their dependency. Their
replication is done in the nodes of the tree on the basis of
the node and file properties.

4. Comparison and evaluation

As mentioned before, there are five tiers in the multi- tier

architecture we used, with all data being produced at the

root. There are 100 nodes in our supposed grid, 14 clusters

and 30 files. We do not consider bandwidth between links.

The requests for files are generated from all nodes. All three

access patterns: Temporal Locality, Geographical locality

and Spatial Locality are considered in requests.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

128

In this case, while considering replicating problems,
we discuss cluster headers instead of individual sites; this
action reduces algorithm complexity from site numbers, to
numbers of clusters.

PHFS and Fast spread examine the grid only in the
level of leaves and consider only the nodes that demand the
files in each level. Requests in these two algorithms are
done only from leaves. These two algorithms have better
response time compared to PFR. In practice, due to blind
creation of the copies in these two algorithms, most of the
created replicas are never used and the available resources
in grid are wasted as a result of the creation of unused
replicas. We can optimize the PFR response time by
training the real data set and having more information about
the system in order to define better Fuzzy rules. By
considering the whole grid and through intelligent creation
of the best replicas on the best possible place, PFR uses the
resources better than PHFS and CFS. In Figure (13), we can
see that the average use of the created replicas at different
time intervals in PFR is more than PHFS and CFS.
Cascading method is one of the methods that act well in
optimized use of resources. We can also see that PFR in the
above requests is better than cascading. In this method, we
created more optimized copies compared to CFS, PHFS and
Cascading and the percentage of the use of the copies
increased greatly.

Figure 9: comparison Average replica usage for

Cascading, PHFS, Fast Spread and PFR.

 5. Conclusions

Considering the dynamic nature of grid, using
static thresholds in grid algorithms reduces
system efficiency. We can optimize our
algorithm by considering the dynamic
characteristics of grid and using them in our
algorithms. PFR can get better results by
having valid data sets and training them via
neural networks or by knowing a real system
better in order to define better Fuzzy rules.

References

[1] The Complexity of Static Data Replication in Data Grids,
in Parallel Computing. ibej , Uroš, Slivnik, Bostjan and
Robič, Borut. 2005. 8-9, s.l. : Parallel Computing, 2005,
Vol. 31. 900–912.

[2] PHFS: A dynamic replication method, to decrease

access latency in the multi-tier data grid. Mohammad
Khanli, Leyli, Isazadeh, Ayaz and Shishavan,
Tahmuras N. 2011. 3, s.l. : Future Generation Computer
Systems, 2011, Vol. 27. 233–244.

[3] Dynamic replication in a data grid using a Modified

BHR Region Based Algorithm. Sashi, K. and
Thanamani, Antoni Selvadoss. 2011. 2, s.l. : Future
Generation Computer Systems, 2011, Vol. 27. 202-210.

[4] The data grid: Towards an architecture for the

distributed management and analysis of large scientific
datasets. Chervenak, Ann, et al. 2000. 3, s.l. : Journal
of Network and Computer Applications, 2000, Vol. 23.
187-200.

[5] Data Management in an International Data Grid

Project. Hoschek, Wolfgang , et al. 2000. s.l. :
Proceedings of the First IEEE/ACM International
Workshop on Grid Computing, 2000. 77-90.

[6] Effective replica allocation in ad hoc networks for

improving data accessibility. Hara, T. 2001. s.l. :
Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies, 2001. 1568-
1576.

[7] Simulation Studies of Computation and Data

Scheduling Algorithms for Data Grids. Ranganathan,
Kavitha and Foster, Ian. 2003. 1, s.l. : Journal of Grid
Computing, 2003, Vol. 1. 53-62.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

129

[8] The impact of data replication on job scheduling
performance in the Data Grid. Tang, Ming, et al. 2006.
3, s.l. : Future Generation Computer Systems, 2006, Vol.
22. 254-268.

[9] File-based replica management. Peter, Kunszt, et al.

2005. 1, s.l. : Future Generation Computer Systems ,
2005, Vol. 21. 115-123.

[10]An ant algorithm for balanced job scheduling in grids.

Chang, Ruay-Shiung, Chang, Jih-Sheng and Lin, Po-
Sheng. 2009. 1, s.l. : Future Generation Computer
Systems, 2009, Vol. 25. 20-27.

[11] Identifying Dynamic Replication Strategies for a

High-Performance Data Grid. Ranganathan, Kavitha
and Foster, Ian T. 2001. s.l. : Proceedings of the
Second International Workshop on Grid Computing,
2001. 75-86.

[12] the MONARC Project:

http://monarc.web.cern.ch/MONARC/

[13] LHC Accelerator Project .http://lhc.web.cern.ch/lhc/

[14] A model to predict the optimal performance of the

Hierarchical Data Grid. Zhang, Junwei, et al. 2010. 1,
s.l. : Future Generation Computer Systems, 2010, Vol. 26.
1-11.

[15] Design and Implementation of a Predictive File

Prefetching Algorithm. M. Kroeger, Tom and D. E.
Long, Darrell. 2001. s.l. : Proceedings of the General
Track: 2002 USENIX Annual Technical Conference,
2001. 105-118.

[16] Predicting file system actions from prior events. M.

Kroeger, Thomas and Darrell, D. E. Long. 1996. s.l. :
96 Proceedings of the 1996 annual conference on
USENIX Annual Technical Conference, 1996. 26-26.

[17] Dynamic Replication algorithm for the multi tier data

grid. Tang, Ming , et al. 2005. 5, s.l. : Future Generation
Computer Systems, 2005, Vol. 21. 775-790.

[18] Dynamic replication algorithm in data grid: Survey.

K. Madi, Mohammed and Suhaidi, Hassan. 2008. s.l. :
International Conference on Network Applications,
Protocols, and Services 2008. 1-7.

[19] A Course in Fuzzy systems and control. Li-Xin Wang,

Li-Xin. 1997. s.l. : Prentice Hall PTR, 1997.

[20] model to predict the optimal performance of the

Hierarchical Data Grid. Zhang, Junwei, et al. 2010. 1,

s.l. : Future Generation Computer Systems, 2010, Vol. 26.
1-11.

[21] Parallel incremental graph partitioning. Ou, Chao-

Wei and S.Ranka. 1997. s.l. : IEEE Transaction On
Parallel and Distributed Systems, 1997. 884 - 896.

[22] Unsupervised and Semi-supervised Clustering: a Brief

Survey. Grira, Nizar, Crucianu, Michel and
Boujemaa, Nozha. 2005. s.l. : A Review of Machine
Learning Techniques for Processing Multimedia
Content, 2005.

[23]Dynamic Data Grid Replication Strategy Based on

Internet Hierarchy. Sang-Min, Park, et al. 2004. s.l :
Springer Berlin Heidelberg, 2004. 838-849.

[24]Network Weather Service(NWS),

http://nws.cs.ucsb.edu/ewiki/.

[25] A Dynamic Data Replication in Grid System.

S.Warhade, P.Dahiwale, M. Raghuwanshi.2016 :
Procedia Computer Science2016, Vol.78, 537 – 543.

[26] Dynamic replication to reduce access latency based on

fuzzy logic system.T. Wang, S.Yao, Z. Xu, S.Pan.2016
Computers and Electrical Engineering. 2016, Vol.0, 1–
10.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.7, July 2025

130

Mahnaz Khojand received the
MSA degree from Islamic Azad
University of Zanjan. her research
interests include grid computing
and cloud.

Mehdi Fatan recieved his B.S. from
Islamic Azad University of
Shabestar in 2008 and the MSA
degree from Islamic Azad
University of Qazvin in 2012. His
research interests include grid
computing, computer vision,
machine learning and robotics.

Sevin Ashrafi received the MSA
degree from Islamic Azad
University of Arak. her research
interests include grid computing..

