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Abstract 
We address the problem of detecting malicious communications 
in environments where IP-based reputation is costly to maintain 
and fragile under adversarial churn. We propose a transaction-
centric representation that groups related log events into sessions 
using standard maxspan and maxpause constraints, and we extract 
three interpretable features per transaction—event count, duration, 
and concurrency. Embedding transactions in this three-
dimensional (3D) space yields geometry that is both human-
interpretable and amenable to lightweight outlier detection; in 
practice, suspicious behaviors manifest as stable high-density 
departures across inbound/outbound traffic and parameter regimes. 
The approach is payload-agnostic (robust to encryption), reduces 
dependence on external threat intelligence, and lowers 
downstream learning complexity by working in a low-dimensional, 
well-separated feature space. We deploy the method on SINET, a 
large Japanese academic backbone with dynamic addressing and 
heavy international connectivity, and we demonstrate that (i) 
transaction geometry reveals characteristic differences between 
maxspan- and maxpause-driven sessionization, (ii) outlier regions 
identified in the 3D space align with operator-validated anomalies 
across directions of flow, and (iii) simple density/thresholding 
schemes operating on these features provide an effective screening 
layer that complements conventional reputation pipelines. 
Collectively, our results indicate that transaction-based modeling 
offers a practical, computationally economical alternative for first-
line malicious-communication detection in high-throughput 
research networks. 
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1. Introduction 
 

For cybersecurity reputation analysis to be 
effective, reliable data sources are essential. In 
particular, leveraging threat intelligence to collect 
real-time information on malware, phishing sites, and 
malicious IP addresses is crucial. In addition, diverse 
data such as network traffic, authentication logs, DNS 
queries, and firewall logs must be gathered and 
analyzed. Integrating external sources like VirusTotal, 

Shodan, AbuseIPDB, and AlienVault OTX further 
enhances coverage.  
 

Accuracy and freshness are critical because 
reputation information changes over time, requiring 
real-time or frequent updates. False positives and false 
negatives must be minimized; appropriate filtering 
and whitelisting improve reliability. Past 
misclassifications should be used to retrain models 
and improve precision. 
 

Analyzing Russia's cyber activities is challenging 
for several reasons. First, state involvement and 
limited transparency hinder reputation analysis. Many 
operations appear state-sponsored, with agencies such 
as the FSB and GRU playing active roles. As a result, 
attackers and infrastructure may be protected by the 
government, complicating data collection by external 
threat-intelligence and research organizations. 
Moreover, Russia's legal framework restricts 
extradition and limits international cooperation in 
cybercrime investigations. 
 

Second, Russian cyber actors employ advanced 
anonymization techniques that complicate tracking. 
Tor, VPNs, proxy chains, and Fast Flux DNS are 
frequently used to obfuscate origins. Fast Flux DNS, 
in particular, rotates domain associations rapidly, 
degrading the effectiveness of domain-reputation 
analysis. By leveraging cloud services and 
compromised servers, attackers can further disguise 
their locations, frustrating reputation-based tracking. 
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Third, groups such as APT28 and APT29 

commonly employ disposable infrastructure and zero-
day exploits. IP addresses and domains are often 
rotated per campaign, rendering traditional blacklists 
ineffective. Zero-day vulnerabilities allow bypassing  
of existing security databases, making detection more 
difficult. This dynamic, rapidly evolving strategy 
undermines conventional reputation techniques and 
necessitates more adaptive, real-time intelligence. We 
have addressed two challenges on SINET, a large-
scale academic backbone network, as follows:  
 

Large IP address space and anonymity on SINET: 
SINET utilizes an extensive IP space, much of it 
dynamically assigned, which complicates reputation-
based evaluation compared with corporate networks 
that have stable allocations. For privacy protection, 
some communications are anonymized, making it 
harder to trace origins and to distinguish legitimate 
research from potential abuse. 
 

International connectivity and external data 
exchange: SINET connects research institutions 
worldwide and facilitates large-scale data exchange. 
Academic networks prioritize openness, leading to 
frequent international interactions. Universities and 
research centers often use international address space 
and cloud services, which can reduce the fidelity of 
external reputation databases. Sudden traffic surges 
from specific countries—suspicious in corporate 
settings— 
 
 

 
are commonplace in academia, increasing the risk of 
misinterpretation by traditional methods. 
 
2. Reputation analysis 
 
The reputation score. R_j of an IP address IP_j is 
computed from attributes X_ij as follows: 

 
where: 
・ j indexes the target IP address 
・ i indexes attributes (e.g., attack frequency, blacklist 
count) 
・ X_ij is the value of attribute i for IP j 
・ w_i is the weight of attribute i 
・ n is the number of attributes  
 
Typical attributes. X_ij includes: 
 
・Blacklist entries: number of times the IP is flagged 
as malicious; 
・Malware detections: incidents attributed to the IP; 
・ Anomalous traffic: high-volume or suspicious 
patterns (e.g., DDoS); 
・Geographical risk: risk associated with the IP’s 
location; 
・Open ports: exposure of unnecessary services; 
Protocol anomalies: unauthorized protocol/port usage. 
 
Normalization. Attributes are normalized to [0,1]: 

Figure 1.  Transaction analysis 
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where X'_{ij} is the normalized value. 
 
Risk classification. Given thresholds T1 and T2, 
 

 
 
Temporal updates. Because an IP’s reputation 
changes over time, we use exponential smoothing: 
 

 
where 0 <= α <= 1. 
 
 

3. Transaction analysis 
 

Splunk’s transaction command groups multiple 
log events into a single transaction representing a 
sequence of operations—for example, interactions 
across systems or a user session. It supports: 
 
• Grouping related events by a shared field (e.g., IP 

address, user ID); 
• maxspan: the maximum total duration of a 

transaction; 
• maxpause: the maximum allowed idle time between 

consecutive events; 
• Retrieval of detailed per-transaction event lists and 

timestamps; 
• Pattern/anomaly discovery for security and 

operations. 
 

Figure1 illustrates two transaction settings. The 
upper panel shows a maxspan-based analysis, which 

Figure 2. 3D plot of duration, concurrerncy and event count 
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constrains the total span considered a single 
transaction (e.g., per IP). Larger maxspan yields larger 
within-transaction metrics such as event count and 
concurrency, while smaller maxspan increases the 
number of transactions. 

The lower panel shows a maxpause-based 
analysis, which constrains the permitted idle time 
between events: if the gap exceeds maxpause (e.g., 5 
minutes), a new transaction begins. 
 
 
4. Experiment 
 
Duration. Duration is the elapsed time from a 
transaction’s first to last event: 

 
In Splunk, this is the field \texttt{duration}. 
 
Event count. Event count is the number of events in a 
transaction: 

 
is represented as event_count. 
 
Concurrency. Concurrency measures how many 
events are active simultaneously within a transaction 
and is useful when transactions overlap: 
 

 
 
Results. These metrics are readily computed using 
transaction. For example: 
 

 
 
Here, startswith and endswith define the conditions 
that mark the beginning and end of a transaction. 
 

Figure 3 analyzes Russian traffic on SINET, split 
into inbound and outbound, and into two transaction 
modes—maxspan-based and maxpause-based—
yielding four 3D plots. The maxspan-based mode 
generally exhibits lower concurrency, whereas the 
maxpause-based mode tends to yield lower durations. 
In maxspan-based analysis, unusually high 
concurrency indicates anomalies. 

 
In the top-left (inbound, maxspan-based), Area 

A shows high concurrency, duration, and event count. 
In outbound maxspan-based analysis, Area C shows 
high duration and event count; a concurrency of 23 is 
anomalous. In the maxpause-based analysis (bottom-
right), Area D stands out with high values for all three 
metrics. The top-right (Area B) has high duration and 
event count but low concurrency; these are still 
flagged as anomalies when thresholds are exceeded. 
 

With maxspan set to 5 minutes, points cluster 
at low event counts with wide spread along the 
duration axis. With maxpause at 5 minutes, clusters 
concentrate at low durations with broader spread along 
the event-count axis. Outliers for inbound maxspan 
and outbound maxpause appear in similar regions—
where all three metrics are high—while outliers in 
Areas B and C occur at high duration and event count 
but low concurrency. 
 
5. Discussion 
 
Transaction geometry and empirical findings. 
Modeling security-relevant behavior as transactions 
yields a three-dimensional (3D) geometry—event 
count, duration, concurrency—that is both 
interpretable and discriminative under encryption. On 
SINET, inbound and outbound traffic exhibit more 
similar distributions in this space than in conventional 
flow counters, suggesting that sessionization imposes 
a unifying structure on heterogeneous workloads. 
Maxspan-based sessionization expands duration and 
occasionally raises concurrency, while maxpause-
based sessionization fragments idle-heavy behaviors 
and concentrates near short durations; outliers differ 
accordingly (high concurrency under maxspan, bursty 
high event counts under maxpause). 
 
Sessionization sensitivity. 
Session boundaries are the principal inductive bias. 
Overly large maxspan can merge unrelated workflows; 
overly small maxpause can fragment coherent ones. 
Practical tuning combines per-sourcetype heuristics 
(e.g., keepalive intervals) with small grid scans that 
maximize separation in the 3D features. A multi-scale 
strategy—evaluating short/medium/long parameter 
pairs in parallel—stabilizes outlier consensus and 
mitigates single-scale bias. 
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Integration with reputation and evaluation. 
Reputation and transaction geometry are 
complementary: the latter provides payload-agnostic, 
feed-light screening; the former adds precision when 
high-quality labels exist. A staged pipeline first 
applies geometric screening to preserve recall and 
reduce candidate volume, then routes survivors to 
reputation checks and content-aware analytics (e.g., 
passive DNS/TLS fingerprints). Recommended 
reporting includes screening reduction at fixed recall, 
mean time-to-flag, and stability of outlier sets across 
sessionization regimes. 
 
Scalability and operations on SINET. 
Computing the three features requires only per-
transaction aggregation with state proportional to open 
transactions per key. Sliding-window operation, 
coarse timestamp bucketing, and pre-partitioning by 
direction or high-variance keys bound memory and 
compute. Emitting compact records eventcount, 
duration, concurrency) enables lightweight density or 
nearest-neighbor scoring and supports analyst 
workflows via stratified sampling of outlier strata. 
 
Privacy and adversarial considerations. 
Because the method is payload-agnostic, it reduces 
exposure to sensitive content; nonetheless, analyst-
facing views should hash or aggregate identifiers, 
enforce role-based access, and adopt retention limits. 
Adaptive adversaries may throttle to remain in low-
concurrency/low-duration regions or inject chaff; 
multi-scale sessionization and cross-feature 
constraints raise evasion cost, while fusing side-
channel signals (e.g., JA3/JA4, DNS volatility) further 
hardens screening. Finally, we analyzed the 
questionnaires data and based on the findings, some 
results and recommendations are suggested. The next 
section shows the results of the companies’ survey. 
 
 
6. Related work 

 

Research on reputation analysis includes Jøsang 
et al. [1], which surveys reputation-based systems. 
Chandola et al. [2] discuss anomaly-detection 
techniques in the financial domain. For transaction-
based anomaly detection, Han and Kamber [3] 
describe clustering methods in distributed systems, 

and Hosseini and Buyya [4] analyze malicious 
transactions in enterprise networks. 

Regarding SINET, Aoyama et al. [5] evaluate high 
speed data transfer in SINET5, and Kitagawa et al. [6] 
study security enhancements for high-speed academic 
networks. Yu and Zhang [7] review deep-learning 
approaches to network anomaly detection, while 
Krishnamurthy et al. [8] present an autoencoder-based 
method that improves detection accuracy for 
transaction analysis. For visualization, Lakkaraju and 
Yurcik [9] and Münz and Li [10] explore traffic 
visualization techniques, including 3D plots for 
forensic analysis. 

From an operational standpoint, a hybrid of 
transaction analysis and machine-learning analysis is 
the most pragmatic choice. 

 

7. Conclusions 
 

We introduced a transaction-centric approach 
for detecting malicious communications that operates 
on three interpretable features—event count, duration, 
and concurrency—derived from sessions constructed 
via maxspan and maxpause. By embedding 
transactions in a three-dimensional (3D) space, our 
method provides human-interpretable geometry that 
enables lightweight screening with simple density- or 
threshold-based criteria, while remaining payload-
agnostic and reducing dependence on external 
reputation feeds. 

Deployed on SINET, a large academic backbone 
characterized by dynamic addressing and substantial 
international connectivity, the approach revealed 
consistent structure across inbound/outbound 
directions and sessionization regimes. In particular, (i) 
maxspan-based sessionization tends to yield lower 
concurrency and wider dispersion along duration, 
whereas (ii) maxpause-based sessionization 
concentrates near short durations with broader spread 
along event count. Outlier regions identified in this 3D 
space aligned with operator-validated anomalies, 
including cases exhibiting simultaneously high 
concurrency, duration, and event count. These 
observations indicate that the transaction geometry is 
stable enough to serve as an effective first-line filter 
that complements conventional IP-reputation 
pipelines and prioritizes analyst attention. 
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Limitations. 

Our results depend on the quality of session 
boundaries: inappropriate maxspan/maxpause settings 
may fragment or merge behaviors and distort feature 
geometry. Workload composition (e.g., scheduled 
data transfers, teaching periods), diurnal effects, and 
bursty research traffic can also shift distributions. 
Ground-truth labels at backbone scale are inherently 
sparse, complicating quantitative benchmarking. 
Finally, adaptive adversaries might attempt to inject 
chaff or manipulate inter-event timing to evade 
detection. 

Implications. 

The low-dimensional, interpretable 
representation offers a pragmatic path to deployable 
screening at scale, particularly where encrypted 
payloads limit deep inspection. Because the features 
are simple and separable, the approach can reduce the 
computational burden of downstream learning and 
shorten triage cycles for security operations in 
research networks. 

We plan to (i) automate parameter selection for 
sessionization via adaptive/online estimation, (ii) 
incorporate multi-scale transaction modeling and 
temporal drift handling, (iii) fuse transaction features 
with passive DNS/TLS/flow metadata and existing 
reputation signals, (iv) conduct comparative studies 
against LOF/DBSCAN/Isolation Forest under 
controlled replay and adversarial scenarios, and (v) 
prototype a streaming implementation for line-rate 
operation with operator-in-the-loop feedback. Broader 
validation on additional academic and enterprise 
backbones will further assess generalizability and 
robustness. 
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