
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

112

Manuscript received September 5, 2025
Manuscript revised September 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.9.16

Correspondence between Software Requirements and
Architecture

Wajid Rafiq† Nadeem Sarwar†† Muhammad Bilal†††, Iqra Ishaq††††, Abdul Rauf †††††,

Muhammad Abbas††††††, Muhammad Sohail†††††††

NUST, Pakistan, University of Gujrat Sialkot Sub Campus, Pakistan, The Islamia University of Bahawalpur, Pakistan

Abstract
Most of the software community would accept that software
architecture and software requirements have a strong association.
Whatever, requirement analyst capture during requirement
gathering phase, it is exactly depicted in software design.
However some experts has different perspective about this
correlation, they argue that requirements are just description of
the problem itself and architecture is the abstract structure of
software system, in which different main elements are connected
with each other. New trends in the field of software architecture
have changed the perspective of considering software
architecture as abstract structure only to a wider scope of
architectural knowledge. Additionally, these new trends assigns a
first class status to architectural design decisions of the software.
In this paper we argue that, fundamentally there is no difference
between software requirements and architectural design decisions,
by adapting this comparatively the latest point of view, we can
identify those areas where both requirements and architecture
communities can help each other.
Keywords:
Software Design and Architecture; software Requirement
Engineering; software architectural knowledge.

1. Introduction

For the last ten years the correlation between
software architecture and software requirements is a
reasonably important topic. In a symposium on the topic of
requirement engineering in the year 1994, some authors
presented the idea of software requirements to architecture.
Most of the other authors were trying to figure out the
difference between requirements and architecture [1].
Garlan talked about the problem space and solution space
and difference between them. Jackson talked about the
difference between application domain and machine
domain [2]. Mead discussed that architect thinks in terms
of developer’s point of view and on the other side
requirement analyst thinks from the customer’s point of
view. Potts explained the difference between “What” and
“How”, here “What” means requirements and “How”
means design. Reubenstein told requirements work as an
index toward a solution and resist the as-built architecture.
Similarly, Shekaran also define the difference between
problem and solution like Garlan, in addition it also talk(s)
about that there is somewhere relation exists between two

of them. The main point is that these two disciplines
evolved independently from each other, there are the fields
to which they should be correlated have still vast gape to
be explored [3]. There are different starting points of any
software system that is to be built; there is a choice for the
startup, either to choose requirements or software
architecture. Both choices will result in different software
development life cycle [4].

Requirement engineering is a field which concerns
with the elicitation of the goals that a user wants to
accomplish with the software system. Now the goals are
specified in the form specifications and constraints after
that the responsibilities of the intended requirements are
distributed among agents like humans of, available
software or software to be developed and devices [9]. The
requirements specify problem domain [10], so they should
answer the questions such as:

1. What are the problem phenomena?

2. What is the cause relation of those [11] phenomena?

3. On which basis these phenomena are problematical

4. Which stakeholder is involved?

The analysis of the user requirements are identified
from top level to bottom and it is further refined until
properties of the desired solutions are established [12]. The
problem frames discussed by Michael Jackson, in his
problem frames, the problem structures which were
frequently occurring were recognized and subsequently
were particular frame [13].

Jackson used the own terminology as indicative
was used for the stated choices. The optative word was
used for the selected choices machine specification.
Problem domain and requirements are all come under
problem analysis field. Usually problem domain is static
portion, it relates to the place of the problem. And this
portion has the indicative domain to which the problem
part relies. The requirements are the optative explanations
of what the client would identify to be true in the problem
side [13]. The machine specifications and the actual
behavior of the machine at its interface are different, there
are limitations on the behavior and specifications, and this

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

113

describes the difference between architecture,
requirements, problem domain and solution.

Software architecture is a collection of design
decisions; the software architecture is a high level
structure of a software system, which comprises usually of
components and connectors. In early 2000s, the software
architecture field was considered structure oriented, but
research in this field, made a shift from structure oriented
view to knowledge concentrated view. The architecture is
not a solution structure(,) but is a collection of design
decisions which resulted that structure [14].

In this research paper we will discuss different
approaches used in collaboration of requirements and
architecture. Different author’s perspective will be
summarized. Different models of collaboration of
requirements and architecture will be discussed. We will
discuss the architectural design decisions in detail. And at
the end, we will conclude our discussion of what
architectural choices are most appropriate for software
development in the context of software requirements.

2. Different Approaches on Software
Requirements and Architecture

After the discussion of this panel, many research

communities started to work on this widely discussed topic
Software requirements and Software architecture and also
tried to reduce the gap between them. Many people do
numerous [2] attempts to find different approaches to
integrate the requirements and architecture. These attempts
can be listed down in terms of different approaches like

1. Problem domains model
2. Twin Peak model
3. CBSP approach

These types of studies give awareness and clear idea about
the exact relationship among software architecture and
software requirements. Therefore, according to the Garlan
research this intrinsic relation is habitually based on the
difference between requirements and architecture and
requirements represent the problem domain and
architecture represents the solution domain.

Fig 1: Requirements to Architecture

3. Requirement Engineering and Architectural
Design

In Figure 1 it is clearly shown that architecture is
an exact mapping of requirements. What is written in the
requirements must be depicted in the architectural design.
We can draw a line between the requirements and
architecture. Requirements are considered with the
analysis of the problem domain and architecture with the
solution domain. According to the recent development in
Software design and architecture domain we imagine that
there is no basic difference between so called requirements
and architecture. If we talk about more precisely than in
fact architecturally important requirements are those which
represent the essential design decision. According to some
people this hypothesis is very proactive it needs more
corroboration. Requirement engineering and software
design architecture has been passing through many advents
which are listed below here.

Table 1: RE vs. Architecture design
Requirement
Engineering

Architecture Design

 Goal [3] oriented
Requirement
Engineering

 Pattern based
research Architecture
Design

 Use case oriented
Requirements
Engineering

 Architectural style
based research
Design

 Sociology and
linguistics bases
Requirement
Engineering

 Attribute based
Architecture Design

o  Component based
Architecture Design

o  Product line based
Architecture Design

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

114

However, both requirements and architecture are

emerging separately from each other and mutual interest
areas of both fields yet to be dig down. Different type of
architectural design consists of many related problem
classes which is related to that particular design research
solution classes. There is a very interesting connection
between Software domain and Software architecture
design domain in software engineering. Recently the
research in problem frames related extended towards the
architectural patterns and try to investigate the relationship
between both of them.

Both requirement engineering and architecture
design communities held many conferences and
workshops to explore the mutual benefits of both
disciplines. In these workshops they discuss what’s
currently going on and how to improve it further. Mostly
the papers presented in these workshops are normally
positioned papers, which indicate the author’s interest in
(the) workshop. These papers are not considered as a
formal publication, but they can be used in future as more
formal way of publication. Normally the papers which are
submitted in these workshops are categorized into 3
groups, which are given in table 2.

Table 2: RE vs. Architecture design research papers
Groups Papers
Group 1 Paper about moving from requirements to

architecture design

Group 2 Paper about moving from architectures to
requirements

Group 3 Paper about integration of requirements and
architecture design

3. Twin Peak Model of Requirements and
Architecture

In Software development field, it’s a normal
observation that as early as you understand your
customer’s requirements, it is easy to move towards such a
solution which is your customers are expecting. Similarly,
before time understanding of architecture provides a basic
idea to discover the further constraints related to
requirement and architecture, it also helps to evaluate the
system’s feasibility [4]. Various software development
communities often opt different substitute for initiation of
software requirements or architectures. Waterfall process
model also creates the system architecture that confines
the users and developers by doing unavoidable changes in
requirements. This was the main drawback of the waterfall
development process. Then Spiral process model comes
which resolve many deficiencies which were included in
waterfall model and offer incremental software

development approach, which help developers to easily
evaluate and change the requirements according to the
project risks. The Spiral process model reflects both
necessities and realities of software systems. Spiral
process model also acknowledges the need of development
of software architecture that are yet stable and changeable
in frequently changing environment. The purpose of this
model was to enable developers so that they can work on
requirements and architecture at the same time [5].

From Figure 2 it clearly shows that twin peak model
develop comprehensive requirements and architectural
specifications in an incremental manner. This model we
can say is the next version of Stephen Mellor's and Paul
ward Development [6] model which they proposed for
Real Time Systems. In software development, the change
control is a fundamental problem. The Twin peak model is
prone to change in a controlled way as they occur.
Analysis and identification of core software requirements
are necessary for the stable software architecture while
changing requirements. Different processes are used to
develop software systems in this context. Using COTS
components means, re-using some built-in products at an
earlier stage of requirements. If we want to be able to
compete with the changing requirements environment,
than we have to accomplish all the development activities
quickly.

Fig 2: Twin Peak Model

3.1 Twin Peak Model Management Concerns
Nowadays, many software development

organizations use twin peak model approach and deal with
requirements specification and design issues at the same
time, except for some fine grain problem domains and firm
contractual procedures. However, doing requirements and
architecture design phase separately is very tricky because
there are some restriction applies on developers, so that
developers are not able to pay attention on their own part
in software development. In actual, architectures can
restrain designers to meet the specific requirements, and

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

115

collection of requirements can also help designer to build
architecture. If we see industrial software development,
then most of the people moving toward spiral process
model. It is normally known as Twin peak model to
emphasize that the requirements and architecture have an
equally contribution in software development. Barry
Boehm identified that Twin peak model address following
3 management concerns:

Fig 3: Twin Peak Model management concerns

. Recently most of the Software design communities

have already identified many design patterns to express the
range of many implementations. These software design
communities also recognized many suitable architectural
design patterns to meet the various types of global
requirements. These Software Design and Requirements
communities also encourage the usage of problem frames
and analysis, pattern frames of Michael Jackson's and
Martin Fowler respectively, to discover the problems for
which solution exists.

3.2 Building Modular Software Incrementally
If we build software systems with well-defined

interfaces, which offers capabilities such as maintenance
and re-use of components. Software design community has
developed design patterns for a specific implementation.
To meet various global requirements, software architecture
community has developed various architectural styles.
Using Michael's problem frame and Martin's analysis
patterns we can identify problems for which solution
domain exists.

Fig 4: Software Architectural Patterns Design, and
Requirements

In above Figure 4 it clearly shows that in software

development environment requirements, architecture and
design get equal attention. Styles and patterns which are
adopted by the developers according to the system
components which need to build and the relationship
between these components. These patterns are connected
by a relationship, figure shows that how different
requirements, design and architecture patterns are
connected and which one is the initial point for component
based development. The predetermined architecture can
easily limit the types of problems. It can be used to
develop different types of design; on the other hand rigid
requirements pose limitations on the architecture and
design choices. From the perspective of requirement
engineering, problem structuring can be achieved by using
problem frames. In the given context, the existing
architectures can influence the perception of (developers
of structuring the problem, some problem frames are
reverse engineered from existing designs.

3.3 Weaving the Development Process
The twin peak model is similar to Kent Back’s

extreme programming approach. So that the goals of
exploring possible implementations of the given context is
early and iterative. The twin peak model is harmonized in
XP that's why it put more focus on front end software
development activities, architectures and requirements.
Large scale projects can be efficiently managed if the
requirements are understood early and the choice of
architecture is made in accordance with the requirements.
The XP focus on production of code whether it is at the
expense of requirements or architecture. On the other hand,
focusing only on requirements and architecture, resist
scalability issues. Iteration and modularity are also
important. The twin pea model is in itself is iterative,
integrating it with components which are tested and

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

116

derived from well understood prototype can help in
development of large scale applications in increments.

3.4 Questions in Software Development
Practitioners and researchers are stressed to improve

processes that permit fast software development in a modest
market, joint with the better analysis and arrangement that is
essential to yield high quality software within low budget
and time constraints. A faster and ideal development
technique allows requirements and architecture of the
software system work collaboratively and iteratively to
describe the features required. This can improve
understanding problems by the developer by considering
architectural conditions and the architectures can be built
which are based on requirements. There are many questions
which are yet to be answered.

Table 3: Basic set of question's in Software development.

Sr. # Question's
1 What requirements are stable in changing

requirements and how are they selected.
2 What type of requirements are stable then

other requirements how are they identified.
3 What type of changes we are prone to expect

in the software architecture?
4 How can we manage architecture and

requirements to minimize changes impact?

The Twin Peaks model signifies already available, but
inherent, state of the exercise in software system
development. Because it is based on well-known research
in its evolutionary development, the software development
communities don’t accept that such a model signifies
acceptable practice. The answers to the above questions
will open new fields such as:

Fig 5: Twin Peak Model as identification of new fields

The development process which makes it possible fast
and incremental delivery are essential for the software’s
that need to be developed quickly and shorter time to
market, as a key requirement. So software development

communities still aren't identifying such type of model
represents the acceptable practice.

4. Boundary between Problems and Solution

Software development life cycle involves two
important activities, requirement engineering and software
architecting. The objective and purpose of the software
system is contained in the requirement engineering process.
This process involves requirements to be unambiguous,
correct and consistent so that they provide a baseline for
further software development, system validation and its
evolution. The software architecture is concerned with the
solution space. The architecture of the software is
explicitly defined and a baseline is prepared on which
subsequent development activities will be planned [7].

In software engineering there is always a challenge that
how to design software that will fulfill the requirements of
the customer and architecture that will maintain the
intended behavior in a systematic way [8].

4.1 Problem Exploration by Requirement
Engineering
Requirement engineering is a field which concerns

with the elicitation on the goals that a user wants to
accomplish with the software system. The goals of a
software system are given in terms of requirements. The
requirement engineering is concerned with the customer
choices, which a customer wants particularly from a
software system. The solution cannot be separated from
the problem analysis, the reason behind that is they will
have an effect on the problem area. Architectural frames
were introduced by Rapnotti gave a new idea of
architectural frames [32]. Architectural elements are
depicted by the use of these frames. They applied their
approach on the pipe and filter style by creating
architectural frames for this style. Pipe and filter style uses
components and connectors, components are pipes and
connectors are filters, components have the capability to
take input and give output. The use of pipe and filter style
introduced new problems, concerning scheduling and
input to output transformation. The new formalization of
the problem, created new requirements and new filters
were needed to be planned, to accomplish the original
problem [2].

There is always an interplay between the problem
analysis and solution considerations, it can happen
conceptually but in reality this separation cannot be true.
There is always interdependency between them. There is a
trade-off between the implementation of certain
requirements over others. The architecture depends not
only on the requirements that can be satisfied but also on
the others which cannot be satisfied. New sub problems
(requirements) can also be faced while implementing

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

117

certain requirements [2]. So requirement engineering
explores the problem domain by working on those
requirements.

4.2 Comparison of Software Architecture and
Solution Structure

The design decisions usually related to the other design
decisions [15]. Kruchten categorizes the design decisions
in three categories:

1. Existence Decisions
2. Property Decisions
3. Executive Decisions

Table 4: influence of design decisions

Sr.

Name of
Design
Decision

 Impact

1. Existenc
e
Decision
s

The existence design decisions are
not much important to capture, but
they are shown in the
implementation of the software
system.

2. Property
Decision
s

Property decisions affect too many
elements, and they are implicit and
may not be documented, there may
be other design decisions made
which overlap the previous property
decisions.

3. Executiv
e
Decision
s

These decisions are all political,
personal, financial, cultural and
technological constraints. Executive
decisions constraints or frame the
property and existence decisions.

Architectural design decisions are supreme
stakeholders for building challenging software. The
relations between the decisions play a good role in the
evolution and maintenance of the development of such
systems [15].

For example,we are building a Java application and
we make a decision that to use JSF, then it limits the use of
JMS and a conflict will rise to use PHP. And similarly we
use publish/subscribe style, then it will conflict the
decision to use peer to peer style and it will constraint with
the decision of choosing the publisher technology. The
architectural design is broken up into individual design
decisions, a new perspective of the architectural design.
This process also helps in diverging the focus onto the
result of using design decisions [15].

4.3 Discussion on Problems and their Solution

After getting requirements from the stakeholders, a
software architect will come to know that there are some
requirements which don’t play any role in software
architecture, for example, if we want to use a matrix based
display to show the speed of the vehicle, then we will not
consider this requirement in the architecture level
discussion. Here we are discussing only those
requirements that plays role in the software architecture.
We are limiting our discussion in context of requirements
to architecture as discussing the architecturally significant
requirements.

Poort stresses on the point that the three are
conflicts that arise by having conflicting requirements in
the domain of solution [16]. Kozaczynski supports this
argument that the main requirements cannot be understood
until the architecture is not baseline [17]. Hofmeister
worked on five different architecture designs, he
summarized that all the architectures started in a non-
sequential manner and goals and the limitations are
demarcated when the architecture was finalized [18].

Savolainen and Kuusela presented a mixed design
of requirements specifications, they support that the design
details which don’t include any option are highly forced
requirements [19].Seemingly the choice of mandatory
performance in a particular situation has an immense
effect on architecture of a software system associated with
the under discussed problem. When we make a choice of
using a particular architectural domain and style, it will
have an effect on the problem side because there are new
requirements according to the style used for which new
design decisions has to be taken. In this discussion(,) we
can conclude that architecturally significant requirements
(ASRs) and architectural design decisions (ADDs) have
not well defined relationship, the sources and the
outcomes cannot be implemented in the problem or
solution domain. So contrasting problem and solutions is
merely a false contradiction.

5. Architectural Design Decisions and
Requirements

The problem frames classify the problem in (a)
structure, analysis and the area in which the problem is
situated, which is called problem space [13].This approach
uses problem rather than (the) solution, this approach uses
the problem domain to allow the owner who have(has) the
knowledge of the base of the problem to initiate and run
the requirement phase. Problem frames has(are) following
different variations:

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

118

Table 5: different situations, solutions and the resource to
attain a solution

Situation Solution Solution Attained
by

1.
Trade-offs
between
requirements

Owner and
solution
engineers
negotiation
[20]

Software engineer’s
field knowledge

2.
New
software
development

Existing
components,
[21]
frameworks
[22]and
architectures
are used

Selection of
architectural styles,
pattern development,
selection of field
specific
architectures,

3.
Experts
workers

Express their
expertise
through
development,
even for
modified
software.

reuse of past
Development
experience.

5.1 Indicative and Optative Statements
ASRs and ADDS) are all same in a way(,) if way if we

consider them as optative statements. ASRs and ADDs
constraint other decisions and sometime themselves are
constrained by some decisions. This has meanings that the
telling problem domain accompanies indicative
specifications. In this sense the decisions that are attained
are categorized into two categories, one of them is named
ADDs and one of them named as requirements.

Fig 6: Indicative properties of optative

An example is discussed here about an application,
a Package Router, for example, when the hardware is
selected and its properties are defined then this will be
considered as the indicative properties and if we build its
architecture then it will define limitations about the
requirements and design. Then we have to define its
software properties, so we have to make the decisions

about the architecture to finalize the architecture. This is
quite natural because if we define the architectural style
then it will pose limits on the requirements conditions.
This is slightly different with a hardware already
determined variation as in this situation we are
determining the architecture of our hardware also because
it was not provided. This concludes that in the first
situation the properties of the hardware was part of domain
problem itself so it used requirements, while in our second
situation the properties of the intended hardware was part
of the problem and it had effect on the problem side [2].

Both ASRS and ADDs have affects that are similar
to the development of the software system, the preferences
for the desired implementation and ruling out the features
that are not desirable. This can only be possible and
implementable for the opinion that ADDs are an important
part of the knowledge of architecture and the intended
architecture is not just a mere structure. .

5.2 Architectural Decision Loop
The decision loop that is drawn in the diagram

below shows the relation between architectural design
decisions. It shows that design decisions are taken, and
they introduce new design decisions that are to be made
with respect to the previous design decisions
[23].Relations in between ADDs is modeled in a loop
called decision loop. Here by using the phenomena the
ADDs put forward latest matters, for those matters new
ADDs are to be engaged. Decision loop can be viewed in
the Figure 7. Implementation needs to take some design
decisions, requirements reflect some design decisions, and
some of them are limiting decisions. For example, if there
is a situation that we want to have check on the data
storage, different scenarios can solve this situation, when
one method is selected this, becomes a design decision,
and this decision topic creates various latest assessments
for example the circulation of the events generated by the
system to the intended components. A New instance of
example is, about the space concerned, according to this
condition the software system should handle data that in
increasing in amount continuously. We will consider this
condition as an ADD because new requirements will be
accomplished by this single requirement. The Rationale
has an important impact of the RE process for instance,
taking an example of goals concentrated RE procedure [9].
Taking a goal and the need of goal is categorized, now
high level goals can be signified. How the system will help
satisfy a goal, this goal will further refine new goals. .
New instance of example is, about the space concerned,
according to this condition the software system should
handle data that in increasing in amount continuously. We
will consider this condition as an ADD because new
requirements will be accomplished by this single
requirement. Rationale has an important impact of the RE
process for instance taking an example of goals
concentrated RE procedure [9]. Taking a goal and the need
of goal is categorized, now high level goals can be

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

119

signified. How the system will help satisfy a goal, this goal
will further refine new goals. Bi directional process of
Decision Making

Holyok and Simon discuss the decision making as
a bidirectional process. In this process and point of view,
there is no proper distinction between the problem and
decision as in the problem of requirements and design
decisions. This type of decision making process plays
(a)role in conflicts, ambiguity characteristics that
accompany in maximum SE environments [25].

5.3 Repository of ADDs and Requirements
Here the authors defined a combined repository of

ADDs and ASRs and name it as a magic well. The user
intention dominates the choice, ASRs and ADDs are
extracted from the magic well,according to the intention or
the user of the magic well. The perception of the
statements as we do is merely different to the perception of
the magic well.

Fig 7: Architectural decision loop

The relation between the RE to architecture with
reference to the magic well is elaborated in table 6.

Table 6: Methods and techniques: Requirements
engineering versus architecture

Sr.

Requirements
Domain

Repository
as Magic
well

Architecture
Domain

1. Requirements
elicitation

Formation of
statements

Choice
making of
architecture

2. Requirements
negotiation

 Architectural
Exchange
analysis

3. Requirements
Descriptions

Storage of
statements in
the repository

Architectural
Design

4. Requirements
Validation

Relate
repository
data with
certainty

Architecture
Valuation

5. Requirements
Documents

Writing down
the repository

Architectural
Explanation

6. Requirements
Administration

Organizing
the repository

Knowledge
management
of the
architecture

Architecture and requirements uses own criteria to
see the well. The new requirements are extracted and
dropped in the well is the process of requirement
specifications. Design and what architects call the design.
The requirements that are elicited or architectural design
decisions should explicitly be defined. Because if this
process is not performed, then it will result in the forgotten
of the requirements, architectural requirements and
architectural design decisions both have their own way of
expression, i.e. formal language specification, UML
diagrams, ER diagrams, sequence diagrams etc. [2].

5.4 Architectural Design Decisions an Example
Roller gives an example of some material floating

in compound with architectural design decisions. If the
material is not touched for a moment, it will sink and
disappear [28]. If we drop the statements in the well and
don’t check them, then this phenomena will be observed.
Architectural statements, management has received a great
interest in requirement engineering as well as architectural
community.

Both architectural decisions and requirements
management consider the well not as statements repository,
but the well but as an information database. Both
requirements and architecture should impose a structure of
their own on the well contents which will capture the
connections between architectural design decisions and
requirements [2].

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

120

6. Requirements Discussion
Requirement engineering is a field which concerns

with the elicitation of the goals that a user wants to
accomplish with the software system.

6.1 Requirements Elicitation
The requirement engineering pays a great attention

towards elicitation techniques the elicitation can be
focused groups, interviews, and prototyping and use cases.
After elicitation every requirement is given a relative
weight by requirement negotiation process. The
architecture pays attention of use of a particular alternative
as what architecture to use and which is not used; selection
of a specific architecture uses an approach of tradeoff
analysis. In the software architecture the requirements are
not processed as they are elicited, but they are less
formally implemented as they are elicited. Bass explained
the business life cycle in the paper they focus on
addressing stake stakeholders and their requirements but
they didn’t discuss the methods of eliciting those
requirements [20]. While applying requirements and
architectural design decisions a certain amount of
creativity is required for example, for requirements,
architectural solutions are needed.

6.2 Requirements and Architectural Validation
Validation is an important part of requirement

engineering and software architecture. The name
evaluation or assessment is given to architectural
validation. Various approaches have been devised by the
architecture community for architectural assessment and
their impact on software quality for example, modifiability
[26] or they consider different quality issues and the
relationship between those quality issues [27]. Different
approaches are used for requirements. Validation such as
reviews and inspections. But those techniques are less
formal. In both of these methods, the technique of
validation is different but they share much in common.
Organizations usually use an approach which is similar to
cafeteria like, this method is to hire the snippets of the
methods to be used which are according to the particular
and specific to the under discussion scenario. Usually
scenario based methods are used both in architectural
assessment and requirements validation.

7. Cross Fertilization
In this topic we discuss that how software

engineering community can benefit from architecture and
vice versa. Architecture business cycle is a model for
architecture community other than that there is no other
model for requirements elicitation. It is not the point of
any concern because, according to the magic well
elicitation is not the architect’s job. Architectural business
cycle concentrates on the interaction between stakeholders
and understanding of their requirements. Business goals
and stake holder’s requirements play a major role for

software architects. The main approach in this area is the
management. The ADDs and related knowledge of the
architecture are of great interest in relation to the
management. This management is the most recent field in
the architecture community. There are many issues that
requirement engineering society is facing; some of them
are evolving, modifiability, traceability, and rationale and
evolution management. The management of the
knowledge of architecture accompanies the building of
frameworks which will arrest the knowledge [29]. There
are different approaches of requirement engineering
management which are similar to the knowledge of
architecture management. Goals plays very important role
in requirement engineering, while the management of the
architecture includes areas such as traceability, conflicts
discovery and exploring new design variations [30].

8. Future Work
Currently requirement management and

architectural knowledge management are considered
different information wells. Both fields compare
challenges to the each other, but they don’t pay attention
to the other perspective of similarity between those fields.
With a broader perspective, we can realize that both areas
are concerned with a same problem but looking at them a
problem has different angel for both or the areas. If we see
deeply we will find that the requirement management has
some areas that are still to be explored and there are many
issues in this area in contrast with the management of
architectural knowledge. Further exploration of this are
will open new horizons for the requirement management.
Both communities can learn from each other’s experiences.
The discussion on the magic well elaborates that
architecture is not just the responsibility of the software
architect, but requirements that are architecturally
significant can shape the architecture. This is because that
both fields are complementary to each other. We cannot do
anything without the consideration of either of them.
Because they are complementary, we require both of them.
Both fields have overlaps) but they use different
perspectives,so we should use our techniques and methods
to surf common goals rather than differences. Further
exploring cohesions between architecturally significant
requirement and architecture design decision will serve
that goal.

New research areas in the field of goals modeling can
be explored in this field the research questions are:

1. What arerequirement interdependencies?

2. How interdependencies are identified?

3. How requirement interdependencies are described?

4. How requirements can address interdependencies?

In architectural knowledge management,
interdependencies have important characteristics. The
reasoning proposed by Kruchten tries to answer those

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

121

questions. The management areas of both requirements
and architecture because of the emergence of these fields a
one to one collaboration and exchange of results of
research is very useful to all the stakeholders, concerned
to(in) this particular field.

9. Conclusion
The conclusion that can be extracted from this

research paper is that ADDs and ASRs are on the equal
level of significance. The difference may be the point of
view through which they are observed. Some people may
disagree, but this paper plays a constructive role in this
area, it will also open new doors towards tighter
collaboration between the two fields. The requirements at
the level of software architecture are very important to
build the software architecture. We have worked to
change the viewpoint of a different perspective of both
fields to a closer and collaborative view. The analysis of
the requirements should be done by considering the
architecture of the software to be built. So we can get
architecturally significant requirements and hence we can
build an architecture which is more collaborating with
requirements. Architectural design decisions plays a key
role in software evolution and maintenance, so we should
use a proper mix of architecturally significant
requirements and architectural design to build a product
that will be maintainable and evolving with time as well
as it will accomplish the customer requirements.

References
[1] Shekaran, C., Garlan, D., Jackson, M., Mead, N.R., Potts, C.,

Reubenstein, H.B., 1994. "The role of software architecture
in requirements engineering". In: First International
Conference on Requirements Engineering (ICRE), pp. 239–
245.

[1] [2] Remco C. de Boer , Hans van Vliet , VU University
Amsterdam, Dept. of Computer Science, De Boelelaan
1081a, 1081HV Amsterdam, The Netherlands, "On the
similarity between requirements and architecture"

[2] [3] STRAW ’03 Second International ,Portland, Oregon ,
2003"Software Requirements to Architectures Workshop"

[3] [4] Bashar Nuseibeh, the Open University, "Weaving
Together Requirements and Architecture""

[4] [5] W. Swartout and R. Balzer, “On the Inevitable
Intertwining of Specification and Implementation,” Comm.
ACM, vol. 25, no. 7, 1982, pp. 438-440)

[5] [6] Paul Ward, Stephen Mellor’s, vol. 1, Prentice Hall, "
Structured Development for Real-Time Systems:
Introduction and Tools"

[6] [7] Dongyun Liu, Hong Mei. , Institute of Software,
School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, P.R.China
liudy@cs.pku.edu.cn, meih@pku.edu.cn , "Mapping
requirements to software architecture"

[7] [8] R.G. Dromey, Software Quality Institute, Griffith
University, Nathan, Brisbane, Qld., 4111, AUSTRALIA

rgd@cit.gu.edu.au , "Architecture as an Emergent Property
of Requirements Integration"

[8] [9] A. van Lamsweerde, Requirements Engineering in the
Year 00: A Research Perspective, Keynote paper, Proc.
ICSEí2000 - 22nd Intl. Conference on Software
Engineering, IEEE Press, June 2000.

[9] [10] Ant´on, A., Potts, C.: "The use of goals to surface
requirements for evolving systems". In: International
Conference on Software Engineering (ICSE’98), IEEE
Computer Society (1998) 157–166

[10] [11] Dardenne, A., Lamsweerde, A.v., Fickas, S.: "Goal-
directed requirements acquisi-tion". Science of Computer
Programming 20 (1993) 3–50

[11] [12] Yu, E.: "An organization modeling framework for
information systems requirements Engineering", In:
Proceedings of the Third Workshop on Information
Technologies and Systems (WITS’93). (1993)

[12] [13] Jackson, M., 2001. Problem Frames: "Analyzing and
Structuring Software Development Problems". ACM Press
Books, Addison-Wesley

[13] [14] de Boer, R. C., Farenhorst, R., 2008. In search of
“architectural knowledge”. In: Third Workshop on SHAring
and Reusing architectural Knowledge (SHARK), Leipzig,
Germany.

[14] [15] Kruchten, P., 2004. “An ontology of architectural
design decisions in software-intensive systems”. In: Second
Groningen Workshop on Software Variability Management,
Groningen, NL

[15] [16] Poort, E.R., de With, P.H., 2004. “Resolving
requirement conflicts through non-functional
decomposition”. In: Fourth Working IEEE/IFIP Conference
on Software Architecture (WICSA), IEEE Computer
Society, p. 145

[16] [17] Kozaczynski, W., 2002. “Requirements, architectures
and risks”. In: Tenth Anniversary Joint IEEE International
Requirements Engineering Conference (RE), p. 6

[17] [18] Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H.,
Ran, A., America, P., 2007. “A general model of software
architecture design derived from five industrial approaches”.
Journal of Systems and Software 80 (1), 106–126

[18] [19] Savolainen, J., Kuusela, J., 2002. “Framework for goal
driven system design”. In: Twenty-sixth Annual
International Computer Software and Applications
Conference, p. 749

[19] [20] Bass, L., Clements, P., Kazman, R., 2003. “Software
architecture in practice”, second SEI Series in Software
Engineering Addison-Wesley Pearson Education, Boston

[20] [21] [J. Cheesman, J. Daniels, UML Components: “A
Simple Process for Specifying Component-Based Software”,
Addison-Wesley, 2000.]

[21] [22] D.F. D’Souza, A.C. Wills, Objects, Components, and
Frameworks with UML : “The Catalysis Approach”,
Addison-Wesley, 1998

[22] [23] De Boer, R.C., Farenhorst, R., Lago, P., van Vliet, H.,
Clerc, V., Jansen, A., 2007. “Architectural knowledge:
getting to the core”. In: Third International Conference on
Quality of Software-Architectures (QoSA), vol. 4880 of
LNCS. Springer

[23] [24] van Lamsweerde, A., 2003. “From system goals to
software architecture”. In: Bernardo, M., Inverardi, P. (Eds.),

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025

122

Formal Methods for Software Architectures, vol. 2804 of
LNCS. Springer-Verlag, pp. 25–43

[24] [25] Holyoak, K.J., Simon, D., 1999. “Bidirectional
reasoning in decision making by constraint satisfaction”.
Journal of Experimental Psychology: General 128 (1), 3–31

[25] [26] Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.,
2004. “Architecture-level modifiability analysis (ALMA”).
Journal of Systems and Software 69 (1–2), 129–147

[26] [27] Kazman, R., Bass, L., Webb, M., Abowd, G., 1994.
SAAM: “a method for analyzing the properties of software
architectures”. In: Sixteenth International Conference on
Software Engineering (ICSE), Sorrento, Italy, pp. 81–90.

[27] [28] Roeller, R., Lago, P., van Vliet, H., 2006. “Recovering
architectural assumptions”. Journal of Systems and Software
79 (4), 552–573

[28] [29] Ali Babar, M., de Boer, R.C., Dingsøyr, T., Farenhorst,
R., 2007. “Architectural knowledge management strategies:
approaches in research and industry”. In: Second Workshop
on SHAring and Reusing architectural Knowledge
Architecture rationale and Design Intent (SHARK-ADI),
Minneapolis, MN, USA

[29] [30] Rolland, C., Salinesi, C., 2005. “Modeling goals and
reasoning with them. In: Aurum”, A., Wohlin, C. (Eds.),
Engineering and Managing Software Requirements.
Springer-Verlag, Berlin Heidelberg, pp. 189–217

[30] [31] van Lamsweerde, A., 2001. “Goal-oriented
requirements engineering: a guided tour”. In: Fifth IEEE
International Symposium on Requirements Engineering
(RE). pp.249–263

[31] [32] Rapanotti, L., Hall, J.G., Jackson, M., Nuseibeh, B.,
2004. “Architecture driven problem decomposition”. In:
Twelfth IEEE International Requirements Engineering
Conference (RE), pp. 80–89.

[32] Sajjad, R., & Sarwar, N. NLP based verification of a UML
class model. In Innovative Computing Technology
(INTECH), 2016 Sixth International Conference on (pp. 30-
35). IEEE.

[33] Kelley, K. Automated test case generation from correct and
complete system requirements models. In Aerospace
conference, 2009 IEEE (pp. 1-10). IEEE.

[34] BAJWA, I., & SARWAR, N. AUTOMATED
GENERATION OF EXPRESS-G MODELS USING
NLP. Sindh University Research Journal-SURJ (Science
Series), 48(1). (2016)

[35] Cheema, S. M., Sarwar, N., & Yousaf, F. Contrastive
analysis of bubble & merge sort proposing hybrid approach.
In Innovative Computing Technology (INTECH), 2016 Sixth
International Conference on(pp. 371-375). IEEE. (2016,
August)

[36] Ibrahim, M., & Sarwar, N.. NoSQL database generation
using SAT solver. In Innovative Computing Technology
(INTECH), 2016 Sixth International Conference on (pp.
627-631). IEEE. (2016, August)

[37] Sarwar, N., Latif, M. S., Aslam, N., & Batool, A.
Automated Object Role Model Generation. International
Journal of Computer Science and Information
Security, 14(9), 301. (2016)

[38] Aslam, N., Sarwar, N., & Batool, A. Designing a Model for
improving CPU Scheduling by using Machine
Learning. International Journal of Computer Science and
Information Security, 14(10), 201. (2016)

[39] Ahmed, F., Khan, A. H., Mehmood, J., Sarwar, N., Ali, A.,
Mehboob, M., & Waqas, A. Wireless Mesh Network:
IEEE802. 11s. International Journal of Computer Science
and Information Security, 14(12), 803. (2016)

[40] Bajwa, I. S., Sarwar, N., & Naeem, M. A. Generating
EXPRESS Data Models from SBVR. A. Physical and
Computational Sciences, 381.(2016).

[41] Bilal, M., Sarwar, N., & Saeed, M. S. A hybrid test case
model for medium scale web based applications.
In Innovative Computing Technology (INTECH), 2016
Sixth International Conference on (pp. 632-637). IEEE.
(2009, March)

[42] Saeed, M. S., Sarwar, N., & Bilal, M. Efficient requirement
engineering for small scale project by using UML.
In Innovative Computing Technology (INTECH), 2016
Sixth International Conference on (pp. 662-666). IEEE.
(2009, March)

Nadeem Sarwar is a Lecturer in
the Department of Computer
Science at University of Gujrat
Sialkot Sub Campus, Sialkot,
Punjab, Pakistan. His primary
research interest involve
developing Software Models and
Natural Language Processing
tools for Software Developers, IT
Manager and Testers, in particular
for Industry related problems. He

have 6 years teaching experience of Software Engineering and
have 11 research publication in National and International
Journal/IEEE Conferences. He doing his PhD in Computer
Science from the International Islamic University, Islamabad,
Pakistan. Contact him at Nadeem_srwr@yahoo.com and
Nadeem.sarwar@uogsiakot.edu.pk

