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Abstract 
In this paper we give a good strategy for solving some linear and 
nonlinear partial differential equations in applied mathematics 
fields, by combining Elzaki transform and the modified variational 
iteration method. This method is based on the variational iteration 
method, Elzaki transforms and convolution integral, such that, we 
introduce an alternative Elzaki correction functional and 
expressing the integral as a convolution. Some examples in applied 
mathematics are provided to illustrate the simplicity and reliability 
of this method. The solutions of these examples are contingent 
only on the initial conditions.  
Keywords: 
Elzaki transform, He's a variational iteration method, Nonlinear 
partial differential equations, Convolution integral. 
 

 
1. Introduction 
 

Nonlinear equations are of great importance to 
our contemporary world. Nonlinear phenomena have 
important applications in applied mathematics, physics, and 
issues related to engineering. Despite the importance of 
obtaining the exact solution of nonlinear partial differential 
equations in physics and applied mathematics there is still 
the daunting problem of finding new methods to discover 
new exact or approximate solutions. 

In the recent years, many authors have devoted their 
attention to study solutions of nonlinear partial differential 
equations using various methods. Among these attempts are 
the Adomian decomposition method, homotopy 
perturbation method, variational iteration method [1-5], 
Laplace variational iteration method [6-8] differential 
transform method, Elzaki transform[14-17 ] and projected 
differential transform method.  
Many analytical and numerical methods have been 
proposed to obtain solutions for nonlinear PDEs with 
fractional derivatives, such as local fractional variational 
iteration method [9], local fractional Fourier method, Yang-
Fourier transform and Yang-Laplace transform and other 
methods. Two Laplace variational iteration methods are 
currently suggested by Wu in [10-13].  
In this paper, we will introduce the new method termed He's 
a variational iteration method, and it will be employed in a 
straight forward manner. 
Also, the main result of this paper is to introduce an 
alternative Elzaki correction functional and expressing the 
integral as a convolution. This approach cans tackle 
functions with discontinuities as well as impulse functions 
effectively. ELzaki transform, henceforth designated by the 

operator  . , is defined by the integral equation. 
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Theorem 1[17]: 
 
          Let  ( )T v  be the ELzaki transforms of the derivative of  f t . Then: 
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  Where  nT v  is ELzaki transform of the nth derivative  of the   function   .f t   
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Theorem 2 (convolution) [17]: 
 

      Let    f t and g t having ELzaki transforms  M v   and ( )N v , then  ELzaki transform of the Convolution of 

f and g  , 

                   
0

* ( )f g t f t g t d 


  ,  is given by:            1
* ( )E f g t M v N v

v
     

 

2. New Elzaki Variational Iteration Method: 
 
To illustrate the idea of new Elzaki variational iteration method, we consider the following general differential equations in 
physics:  

                                      ( , ) ( , ) ( , )L u x t N u x t h x t                                                                          (1) 

Where L  is a linear partial differential operator given by  
2

2t




,  N is nonlinear operator and ( , )h x t  is a known analytical 

function.  
According to the variational iteration method, we can construct a correction function for equation (1) as follows:                                              

 1

0

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) , 0
t

n n n nu x t u x t x Lu x Nu x h x d n                                                      (2)              

Where   is a general Lagrange multiplier, which can be identified optimally via the variational theory, the subscripts n  

denote the nth approximation, ( , )nNu x   is considered as a restricted variation, i.e. ( , ) 0nNu x   . 

Also we can find the Lagrange multipliers, by using integration by parts of Eq. (1), but in this paper, the Lagrange multipliers 

are found to be of the form ( , )x t    , and in such a case, the integration is basically the single convolution with 

respect to t , hence Elzaki transform is appropriate to use 
Take Elzaki transform of eq. (2), then the correction functional will be constructed in the form                     

     1

0

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) , 0
t

n n n nE u x t E u x t E x Lu x Nu x h x d n     

 
     

 
                       (3) 

Therefore  

        

     

   

1( , ) ( , ) ( , ) ( , ) ( , ) ( , )

1
( , ) ( , ) ( , ) ( , ) ( , )

n n n n

n n n

E u x t E u x t E x t Lu x t Nu x t h x t

E u x t E x t E Lu x t Nu x t h x t
v





       

     




                            (4) 

Where * is a single convolution with respect to t . 

To find the optimal value of  ( , )x t   we first take the variation with respect to ( , )nu x t . Thus, 

     1

1
( , ) ( , ) ( , ) ( , ) ( , ) ( , )n n n n

n n n

E u x t E u x t E x t E Lu x t Nu x t h x t
u u u v

   
                        (5) 

Then eq (5) becomes 

                      1

1
( , ) ( , ) ( , ) ( , )n n nE u x t E u x t E x t E Lu x t

v
                                                     (6) 

In this paper we assume that L  is a linear partial differential operator given by 
2

2t




,  then eq (6) can be written in the form: 
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                           1 3

1
( , ) ( , ) ( , ) ( , )n n nE u x t E u x t E x t u x t

v
   

        
                                          (7) 

The extreme condition of 1( , )nu x t   requires that 1( , ) 0nu x t   . This means that the right hand side of eq (7) should be 

set to zero, then we have the following condition 

                                          3( , ) ( , )E x t v x t t                                                                      (8) 

Then we have the following iteration formula 

     1

0

( , ) ( , ) ( ) ( , ) ( , ) ( , ) , 0
t

n n n nE u x t E u x t E t Lu x Nu x h x d n    

 
      

 
                         (9) 

 

3. Applications: 
 
In this section we apply the Elzaki variational iteration method to solving some linear and nonlinear partial differential 
equations in physics. 
 

Example 1: 
 
Consider the initial linear partial differential equation 

               
( ,0)

( , ) ( , ) ( , ) 0 , ( ,0) 0 ,tt xx

u x
u x t u x t u x t u x x

t


    


                                      (10) 

The Elzaki variational iteration correction functional will be constructed in the following manner 
 

     1

0

( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( , )
t

n n n tt n xx nE u x t E u x t E x t u x u x u x d     

 
     

 
                     (11) 

Or 

     

   

 

1

2

( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( , )

1
( , ) ( , ) ( ) ( , ) ( ) ( , ) ( , )

1
( ( , )) ( ,0) ( ,0) ( ) ( , )1

( , ) ( , )
( , )

n n n tt n xx n

n n tt n xx n

n
n n n xx

n

n

E u x t E u x t E x t u x t u x t u x t

E u x t E x t E u x t u x t u x t
v

u
E u x t u x v x E u x t

E u x t E x t v t
v

Eu x t







       

     

        







                   (12) 

Taking the variation with respect to ( , )nu x t  of eq (12), to obtain 

    

   1

2

( , ) ( , )

1
( ( , )) ( ,0) ( ,0) ( ) ( , )1

( , )
( , )

n n
n n

n
n n n xx

n
n

E u x t E u x t
u u

u
E u x t u x v x E u x t

E x t v t
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Eu x t

 
 

 


 

         
 

                             (13) 

Then we have 
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The 

extreme condition of 1( , )nu x t   requires that 1( , ) 0nu x t   . Hence, we have  

                
3

1
3 2

1 1
1 ( , ) 0 , ( , ) sin

1

v
E x t and x t E t

v v v
                

                                       (14)                                        

Substituting eq (14) into eq (11), to obtain 

 

     

     

1

0

( , ) ( , ) sin( ) ( ) ( , ) ( ) ( , ) ( , )

1
( , ) sin ( ) ( , ) ( ) ( , ) ( , )

t

n n n tt n xx n

n n tt n xx n

E u x t E u x t E t u x u x u x d

E u x t E t E u x t u x t u x t
v

    

 
     

 

   


                      (15) 

Let 0 ( , ) ( ,0) ( ,0)
u

u x t u x t x xt
t


  


, then from eq (15), we have 

       1

1
( , ) sinE u x t E xt E t E xt

v
   

The inverse Elzaki transforms yields 

                                          
3

1 3
1 2
( , ) sin

1

xv
u x t xt E xv x t

v
  

     
                                                 (16) 

Substituting eq (16) into eq (11), to obtain 

                       2 2( , ) sin sin 0 ( , ) sinE u x t E x t E t E then u x t x t    

And then the exact solution of eq. (10) is  
                                       ( , ) sinu x t x t                                                                                               (17) 

We see that the exact solution is coming very fast by using only few terms of the iterative scheme.  
 

Example 2: 
 
Consider the nonlinear partial differential equation: 

         2 2 2 ( ,0)
( , ) ( , ) ( , ) , ( ,0) 0 ,tt xx

u x
u x t u x t u x t x t u x x

t


    


                                    (18) 

The Elzaki variational iteration correction functional will be constructed as follows 
 

         1 2 2 2
0

( ) ( , ) ( ) ( , )
( , ) ( , ) ( , )

( , )

t
n tt n xx

n n

n

u x u x
E u x t E u x t E x t d

u x x t

 
  



   
    

    
                              (19) 

Or 

   

 

1 3

3

1 1
( , ) ( , ) ( , ) ( , ) ( , )

1 1
( , ) 1 ( , )

n n n n

n

E u x t E u x t E x t E u x t E u x t
v v

E u x t E x t
v v

    

 


        

           



IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025 
 

 

156

 

   

 

 

2 2 2
1

2 2 2

2

( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , ) ( , )

1
( , ) ( , ) ( ) ( , ) ( ) ( , ) ( , )

1
( ( , )) ( ,0) ( ,0) ( )1

( , ) ( , )

n n n tt n xx n

n n tt n xx n

n
n n n

n

E u x t E u x t E x t u x t u x t u x t x t

E u x t E x t E u x t u x t u x t x t
v

u
E u x t u x v x E u

E u x t E x t v t
v








         

         


  

    
2 2 2

( , )

( , ) ( )

xx

n

x t

Eu x t E x t

 
 
 
   

               (20) 

      

Taking the variation with respect to ( , )nu x t  of eq (20), and making the correction functional stationary to obtain 

 
 
 
 
 
 
This implies that:  

                                     1
3 3

1 1
1 ( , ) 0 , ( , )E x t and x t E t

v v
           

                                  (21) 

Substituting eq (21) into eq (19), to obtain 

                     1 2 2 2
0

( ) ( , ) ( ) ( , )
( , ) ( , ) ( )

( , )

t
n tt n xx

n n

n

u x u x
E u x t E u x t E t d

u x x

 
 

 

   
    

    
                         (22) 

Or 

           2 2 2
1

1
( , ) ( , ) ( ) ( , ) ( ) ( , ) ( , )n n n tt n xx nE u x t E u x t E t E u x t u x t u x t x t

v                           (23) 

Let 0 ( , ) ( ,0) ( ,0)
u

u x t u x t x xt
t


  


, then from eq (23), we have 

      2 2 2 2
1

1

1
( , ) 0 0

( , )

E u x t E xt E t E x t x t
v

u x t xt

       


 

Then the exact solution of eq (18) is            ( , )u x t xt  

                                          
Again the exact solution is coming very fast by using only few terms of the iterative scheme. 

 
Example 3: 
 
Consider the physics nonlinear boundary value problem 

                                       
2

6
6 0 , ( ,0) , 0t x xxxu uu u u x x

x
                                                (24) 

The Elzaki variational iteration correction functional is 

   1

0

( ) ( , ) 6 ( , )( ) ( , )
( , ) ( , ) ( , )

( ) ( , )

t
n t n n x

n n
n xxx

u x u x u x
E u x t E u x t E x t d

u x

  
  



  
      

                      (25) 

Or 

   

 

1 3

3

1
( , ) ( , ) ( , ) ( , )

1
( , ) 1 ( , )

n n n

n

E u x t E u x t E x t u x t
v

E u x t E x t
v

   

 


        

      
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     

   

 

1( , ) ( , ) ( , ) ( ) ( , ) 6( )( , )( ) ( , ) ( ) ( , )

1
( , ) ( , ) ( ) ( , ) 6( )( , )( ) ( , ) ( ) ( , )

1 1
( , ) ( , ) ( , ) ( ,0) 6( )( , )(

n n n t n n x n xxx

n n t n n x n xxx

n n n n

E u x t E u x t E x t u x t u x t u x t u x t

E u x t E x t E u x t u x t u x t u x t
v

E u x t E x t Eu x t vu x E u x t u
v v







       

     

       ) ( , ) ( ) ( , )n x n xxxx t u x t
   

 

      

Taking the variation with respect to ( , )nu x t  of the last equation, and making the correction functional stationary to obtain 

   

 

1

2

1 1
( , ) ( , ) ( , ) ( , )

1
( , ) 1 ( , )

n n n

n

E u x t E u x t E x t E u x t
v v

E u x t E x t
v

   

 


        

      

 

This implies that:  

                                     1 2
2

1
1 ( , ) 0 , ( , ) 1E x t and x t E v

v
                                              (26) 

Substituting eq (26) into eq (25), to obtain 

   1

0

( ) ( , ) 6( )( , )( ) ( , )
( , ) ( , ) ( 1)

( ) ( , )

t
n t n n x

n n
n xxx

u x u x u x
E u x t E u x t E d

u x

  




  
      

  

Or 

                               1

1
( , ) 1 ( ) 6( )( ) ( )n n n t n n x n xxxE u x t E u E E u u u u

v                                     (27) 

Let 0 2

6
( , ) ( ,0)u x t u x

x
  , then from eq (27), we have 

   1 12 5 2 5

2
2 2 5 8

6 1 288 6 288
( , ) 1 ( , )

6 288 6048
( , ) ,...

E u x t E E E u x t t
x v x x x

u x t t t
x x x

              

  

 

Then the exact solution of eq (24) is            
 

 

3

23

6 24
( , )

12

x x t
u x t

x t





    

 
 

4.  Conclusion: 
 
       The method of combining Elzaki transforms and 
variational iteration method is proposed for the solution of 
linear and nonlinear partial differential equations. This 
method is applied in a direct way without employing 
linearization and is successfully implemented by using the 
initial conditions and convolution integral. 
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Appendix: 

Elzaki transform of some functions                                
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