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Abstract 
The COVID-19 pandemic exposed a critical limitation of 
conventional facial recognition systems: significant accuracy 
degradation when faces are partially occluded by masks. 
Traditional CNN-based models, trained on unmasked datasets, 
struggle to extract discriminative features from masked faces. This 
paper proposes a hybrid architecture that integrates a ResNet-50 
convolutional backbone, Convolutional Block Attention Modules 
(CBAM), and Vision Transformers (ViT) to enhance recognition 
under occlusion. Publicly available datasets Masked Face 
Recognition Dataset (MFRC) and Real-World Masked Face 
Dataset (RMFD) were used for training and evaluation after 
systematic preprocessing, augmentation, and transfer learning. 
The model was trained using categorical cross-entropy loss and 
optimized with Adam. Performance was measured using accuracy, 
precision, recall, and F1-score. Experimental results show the 
hybrid CNN–ViT with attention achieved 98.2% accuracy, 
outperforming CNN-only baselines by a significant margin and 
demonstrating robustness across diverse mask types, poses, and 
illumination conditions. Comparative evaluation highlights the 
contribution of attention modules in emphasizing unoccluded 
regions and the role of ViTs in modelling global facial 
dependencies. The findings confirm the effectiveness of hybrid 
architectures for masked face recognition and provide a practical 
design framework for deployment in security-critical contexts 
such as ATMs, airport control points, and surveillance systems. 
This research contributes an empirically validated model 
architecture, a reproducible evaluation pipeline, and insights into 
accuracy–complexity trade-offs relevant for future real-world 
adoption. 
Keywords: 
Facial recognition; Masked faces; Convolutional Neural 
Networks; Vision Transformer; Attention mechanisms; Deep 
learning; Biometric security.  

 
1. Introduction 
 

Facial recognition has emerged as a dominant 
biometric technology in applications ranging from 
access control and surveillance to financial 
authentication and border management (Parkhi et al., 
2015; Schroff et al., 2015). Its growth has been fuelled 
by advances in deep learning, particularly 
Convolutional Neural Networks (CNNs), which 
provide robust, hierarchical feature extraction for 

identity recognition. However, the COVID-19 
pandemic revealed a significant vulnerability: 
widespread mask usage caused traditional systems, 
trained on unoccluded facial datasets, to experience 
dramatic accuracy degradation (Damer et al., 2021; 
Boutros et al., 2021). Masks obscure critical lower-
face features such as the nose and mouth, reducing 
discriminative information and exposing weaknesses 
in real-world deployments such as ATM monitoring, 
airport security, and public surveillance. 

Researchers have pursued three main 
directions to address these challenges which are: (1) 
GAN-based inpainting to reconstruct occluded 
regions (Hosen & Islam, 2022), (2) attention 
mechanisms to emphasize unoccluded regions like the 
eyes and forehead (Sun & Tzimiropoulos, 2022), and 
(3) Vision Transformers (ViTs) to model global 
context across image patches, compensating for 
missing features (Dosovitskiy et al., 2021). While 
each approach improves performance, they present 
limitations: GAN-based models are computationally 
heavy, CNN-only approaches lack global feature 
modelling, and pure ViT solutions demand extensive 
pretraining and large resources. 

This study proposes a hybrid architecture 
combining CNNs, attention modules, and ViTs to 
balance local and global feature extraction, improve 
robustness under occlusion, and remain 
computationally feasible for deployment. Therefore, 
the research objectives are fourfold: (1) design a 
hybrid CNN–ViT model with CBAM integration; (2) 
train and evaluate it on masked datasets (MFRC, 
RMFD); (3) benchmark performance against CNN-
only models; and (4) analyse contributions of attention 
and transformer components through ablation 
experiments. Contributions of this paper are threefold: 

(i) A validated hybrid CNN–ViT model with  
attention achieving state-of-the-art 
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performance (98.2% accuracy) on masked 
face datasets. 

(ii) A reproducible preprocessing and evaluation pipeline 
enabling future research and industrial adoption. 

(iii) (iii) Empirical insights into the role of attention  and 
transformer modules, offering design guidelines for 
real-world security applications. 

This work advances the field of biometric recognition 
under occlusion and supports practical deployment in 
post-pandemic security environments, by addressing 
the performance limitations of traditional systems and 
balancing accuracy with computational efficiency.  
 
 
 
2. Related Work 
 

2.1 Facial recognition under occlusion 

Facial recognition systems traditionally relied 
on full-face visibility, with handcrafted features such 
as Eigenfaces or Fisherfaces (Turk & Pentland, 1991; 
Belhumeur et al., 1997). While effective under 
controlled conditions, these methods suffered from 
sensitivity to pose, lighting, and occlusion. The rise of 
deep learning and CNNs enabled automatic feature 
learning, driving breakthroughs in large-scale 
recognition tasks (Parkhi et al., 2015; Schroff et al., 
2015). The COVID-19 pandemic created new urgency 
by exposing the fragility of CNN-based models under 
mask occlusion. Damer et al. (2021) demonstrated 
performance degradation of up to 50% on commercial 
recognition systems when tested on masked faces. 
This gap catalyzed extensive research into occlusion-
resilient recognition architectures. 

2.2 CNN-based approaches 

CNNs remain the foundation of most 
recognition pipelines due to their ability to learn 
hierarchical spatial features efficiently. Models such 
as VGGFace, ResNet, and FaceNet achieve high 
accuracy on unmasked datasets (Schroff et al., 2015). 
However, CNNs rely on local receptive fields, limiting 
their capacity to model global dependencies across 
facial regions. When masks obscure the lower half of 
the face, CNNs lose significant discriminative 
information, reducing robustness (Damer et al., 2021). 

Recent CNN-focused studies have attempted to 
mitigate this issue through fine-tuning on masked 
datasets (Chen et al., 2019), region-specific training 
on visible areas (Wang et al., 2023), and hybridizing 
CNN features with handcrafted descriptors such as 
Local Binary Patterns (LBP) (Essel et al., 2024). 
While these strategies improve accuracy, they remain 
constrained by CNNs’ local modelling scope. 

2.3 Attention mechanisms 

Attention modules refine CNN feature maps 
by reweighting the importance of channels and spatial 
regions. Squeeze-and-Excitation Networks (SENet) 
introduced channel-wise reweighting (Hu et al., 2018), 
while Convolutional Block Attention Modules 
(CBAM) sequentially apply channel and spatial 
attention, enabling models to focus on unoccluded 
facial areas (Woo et al., 2018). Sun and Tzimiropoulos 
(2022) demonstrated that CBAM-equipped CNNs 
improved masked recognition accuracy by adaptively 
weighting visible features such as eyes and forehead. 
Similarly, Wang et al. (2023) highlighted the potential 
of lightweight attention mechanisms to enhance 
occlusion robustness without significantly increasing 
model size. 

2.4 Vision Transformers (ViTs) 

Transformers, originally developed for NLP, 
have been adapted to computer vision tasks via patch 
embeddings and self-attention mechanisms 
(Dosovitskiy et al., 2021). ViTs excel at capturing 
long-range dependencies, offering global context 
integration beyond CNNs’ local receptive fields. 
Applied to facial recognition, ViTs compensate for 
missing features by reasoning over visible regions. 
Hosen and Islam (2022) proposed a hybrid CNN–ViT 
model, reporting improved accuracy over CNN-only 
baselines on masked datasets. However, pure ViT 
approaches require extensive pretraining (e.g., 
ImageNet-21k), large computational resources, and 
are challenging to deploy in real-time security systems. 

2.5 Hybrid approaches 

Hybrid architectures combine CNNs’ local 
feature extraction with ViTs’ global context modelling. 
Hosen and Islam (2022) and Ahmed et al. (2025) 
demonstrated that CNN–ViT pipelines outperform 
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standalone CNNs and ViTs, particularly when paired 
with attention mechanisms. Essel et al. (2024) 
combined CNN embeddings with LBP texture 
descriptors, showing robustness under low-resolution 
occluded images. Transfer learning also plays a key 
role. Pretrained CNN and ViT backbones, fine-tuned 
on masked datasets, improve generalisation and 
reduce training time (Yu et al., 2024). Self-supervised 
approaches that reconstruct masked regions before 
recognition have shown promise but require extensive 
resources (Yu et al., 2024). 

2.6 Comparative summary 

A summary of representative studies in masked face 
recognition, their models, datasets, and key findings 
was provided in Table 1. 

Table 1. Comparative overview of masked face 
recognition studies 

Study Approa
ch 

Datase
t(s) 

Key 
Results 

Limitat
ions 

Damer 
et al. 
(2021) 

Benchm
arking 
commer
cial FR 
systems 

Public 
masked 
dataset
s 

Accura
cy 
droppe
d up to 
50% 
under 
masks 

No new 
solution 
propose
d 

Hosen 
& Islam 
(2022) 

Hybrid 
CNN–
ViT 

RMFD +10% 
accurac
y vs 
CNN 

High 
comput
ational 
cost 

Sun & 
Tzimiro
poulos 
(2022) 

CNN + 
CBAM 

MAFA
, 
Maske
dFace-
Net 

Improv
ed 
accurac
y via 
attentio
n 

Sensitiv
e to 
tuning 

Yu et al. 
(2024) 

Self-
supervis
ed 
masked 
pretrain
ing 

Occlud
ed 
bench
marks 

State-
of-the-
art 
robustn
ess 

Require
s large 
pretrain
ing 

Essel et 
al. 
(2024) 

CNN + 
LBP 
hybrid 

Low-
res 
masked 

Outperf
ormed 

Limited 
to low-
res data 

dataset
s 

pure 
CNNs 

Ahmed 
et al. 
(2025) 

Hybrid 
CNN–
Transfo
rmer 

Maske
dFace-
Net, 
RMFD 

Robust 
recogni
tion 
system 

High 
comput
ation 
demand
s 

Wang et 
al. 
(2023) 

Review 
& 
benchm
arking 

Multipl
e 
dataset
s 

Identifi
ed 
lightwe
ight 
needs 

No 
novel 
architec
ture 

 

2.7 Research gap 

Despite progress, challenges persist. The CNN 
approaches lack global reasoning, while pure ViTs are 
resource-intensive. Hybrid CNN–ViT models 
improve accuracy but often at high computational cost. 
Moreover, the lack of diverse masked datasets limits 
generalisation across demographics and mask types. 
Lightweight, attention-enhanced hybrid models 
trained with reproducible pipelines are therefore 
essential to balance accuracy and deployability in real-
world scenarios. This study directly addresses these 
gaps by designing a CNN–ViT hybrid with CBAM 
attention, trained on MFRC and RMFD datasets, and 
evaluated against CNN-only baselines 
 
3. Methodology 
 
3.1 Overview 

The proposed masked face recognition system 
(MFRS) employs a hybrid architecture combining 
Convolutional Neural Networks (CNNs), 
Convolutional Block Attention Modules (CBAM), 
and Vision Transformers (ViTs). CNNs extract local 
features, CBAM reweights them to emphasize 
unoccluded regions, and ViTs capture global 
dependencies across the face. The system is trained 
and evaluated on publicly available masked datasets 
following a standardized preprocessing and 
augmentation pipeline. 

 
 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.9, September 2025 
 

 

171 

 

3.2 Datasets 

Two publicly available datasets were used: 

(i) Masked Face Recognition Dataset (MFRC): 
Contains approximately 12,000 images of masked 
and unmasked faces with variations in mask type, 
demographics, pose, and lighting. It is widely used 
for benchmarking masked recognition (Wang et 
al., 2023). 

(ii) Real-World Masked Face Dataset (RMFD): 
Includes about 5,000 masked and 90,000 
unmasked images collected from online sources 
during the COVID-19 pandemic. It provides 
realistic variability in orientation, image quality, 
and mask coverage (Wang et al., 2020). 

Dataset preparation: All images resized to 224 × 
224 pixels. Label encoding for class consistency 
(masked/unmasked identities). Split: 70% training, 
15% validation, 15% testing. 

3.3 Preprocessing 

In order to improve robustness and generalisation, 
the following preprocessing steps were applied: 
(i) Grayscale conversion (selective): Simplifies 
computation for LBP/CNN hybrids. 
(ii) Histogram equalisation: Enhances contrast in 
low-light images. 
(iii) Resizing and normalisation: Scales pixel values 
to [0,1] for stable convergence. 
(iv) Augmentation: Includes random rotations (±15°), 
horizontal flips, zoom (±10%), and brightness 
adjustments to simulate real-world variability. 

This ensured that the model could generalise across 
different mask types, facial orientations, and lighting 
conditions. 

3.4 Model architecture 

The proposed hybrid architecture integrates CNN, 
CBAM, and ViT components: 

(a) CNN backbone: A ResNet-50 pretrained on 
VGGFace2 was used for local feature 
extraction. Residual connections mitigated 
vanishing gradient problems. 

(b) CBAM modules: Inserted after select 
convolutional blocks to apply channel 
attention (highlight informative filters) and 
spatial attention (focus on visible regions 
such as eyes and forehead) (Woo et al., 2018). 

(c) Vision Transformer encoder: Operated on 
refined CNN features, dividing them into 
fixed-size patches, embedding them, and 
applying multi-head self-attention to capture 
global relationships. 

(d) Classification head: Fully connected layers 
with dropout regularisation, followed by a 
Softmax layer for identity classification. 

 
 
 
 
Proposed Hybrid CNN–CBAM–ViT Architecture 
is represented in Figure 1 
                ┌────────────────┐ 
                │  Input Image   │ 
                └───────┬────────┘ 
                        │ 
                        ▼ 
        
┌────────────────────────────────┐     
│      CNN Backbone (ResNet-50)  │     
│  - Local feature extraction    │ 
│  - Hierarchical representations│      
└───────────┬────────────────────┘ 
            │ 
            ▼ 
   ┌─────────────────────────┐ 
       CBAM (Attention)      │ 
   │ - Channel attention     │ 
   │ - Spatial attention     │ 
   │ - Focus on unoccluded   │ 
   │   face regions          │ 
   └──────────┬──────────────┘ 
              │ 
              ▼ 
     
┌─────────────────────────────┐ 
│ Vision Transformer (ViT)    │ 
│ - Global context modelling  │ 
│ - Patch embeddings          │ 
│ - Self-attention reasoning  │ 
└───────────┬────────────────┘ 
            │ 
            ▼ 
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        ┌───────────────────────┐ 
        │     Feature Fusion    │ 
        │ - Combine CNN + ViT   │ 
        │  refined features     │ 
        └──────────┬────────────┘ 
                   │ 
                   ▼ 
        
┌───────────────────────────┐ 
│  Fully Connected Layer    │ 
│  (Classification Head)    │ 
└──────────┬───────────────┘ 
           │ 
           ▼ 
     ┌───────────────────┐ 
     │   Output Identity │ 
     │ (Predicted Class) │ 
     └───────────────────┘ 

Figure 1. Proposed Hybrid CNN–CBAM–ViT 
Architecture 

This hybrid design leverages CNNs for 
efficient local feature extraction and ViTs for holistic 
reasoning, with CBAM ensuring robustness under 
occlusion. 

3.5 Training Strategy 

A transfer learning approach was adopted to 
leverage the representational power of large-scale 
pretrained models. The convolutional backbone was 
initialized with ResNet-50 weights pretrained on the 
VGGFace2 dataset, while the Vision Transformer 
(ViT) was initialized with weights pretrained on 
ImageNet-21k. This initialization enabled the model 
to benefit from robust feature representations learned 
on diverse datasets, thereby accelerating convergence 
and improving generalization. During fine-tuning, the 
lower layers of ResNet were frozen to preserve low-
level feature extraction, whereas the upper 
convolutional layers and the ViT encoder were 
unfrozen to allow task-specific adaptation. In addition, 
the Convolutional Block Attention Module (CBAM) 
was trained end-to-end, ensuring that attention 
mechanisms were fully optimized within the 
integrated architecture. 

The training process employed categorical 
cross-entropy as the objective function, optimized 

using the Adam optimizer with a learning rate of 
0.0001. A batch size of 32 was used, and training was 
conducted over a maximum of 50 epochs. To mitigate 
overfitting, an early stopping criterion was applied, 
monitoring the validation loss and halting training 
once performance plateaued. All experiments were 
executed on NVIDIA Tesla T4 GPUs via the Google 
Colab Pro environment. Both TensorFlow/Keras and 
PyTorch frameworks were utilized to implement and 
evaluate the proposed architecture. 

3.6 Evaluation Metrics 

The performance of the proposed model was 
evaluated using standard classification metrics. 
Accuracy was calculated as the ratio of correctly 
predicted instances to the total number of predictions. 
Precision was defined as the proportion of true 
positive predictions relative to the total of true 
positives and false positives, while Recall measured 
the proportion of true positives relative to the total of 
true positives and false negatives. The F1-score, 
representing the harmonic mean of precision and 
recall, was used to provide a balanced measure of 
model performance. Furthermore, confusion matrices 
were constructed to examine misclassification trends 
between masked and unmasked identities, thereby 
offering deeper insight into classification errors. 
 

4.  Results and Discussion 

4.1 Model performance 

The proposed hybrid CNN–ViT with CBAM 
achieved strong recognition performance across both 
datasets. Table 2 presents the evaluation metrics on the 
test sets. 

Table 2. Performance metrics of the proposed 
model 

Dataset Accuracy Precision Recall F1-

score 

MFRC 98.2% 97.9% 98.1% 98.0% 

RMFD 97.6% 97.2% 97.5% 97.3% 
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The model consistently achieved >97% across all 
metrics, confirming its robustness to varying mask 
types, illumination, and pose conditions. 

4.2 Comparative analysis 

The hybrid architecture against standard CNN-only 
baselines and ViT-only models was benchmarked to 
compared performance of baselines models with the 
proposed model as shown in Table 3. 

Table 3. Comparison with baseline models 

Model Dataset Accuracy Observations 

ResNet-

50 (CNN) 

MFRC 91.5% Poor under 

occlusion 

VGG-16 

(CNN) 

MFRC 88.9% Shallow 

features, 

mask-

sensitive 

ViT (Base) MFRC 94.7% Strong but 

resource-

heavy 

CNN + 

CBAM 

MFRC 95.4% Better 

attention to 

unmasked 

areas 

Proposed 

CNN–ViT 

+ CBAM 

MFRC 98.2% Balanced 

local/global 

features, 

robust 

performance 

Experience results demonstrate that while CNN-only 
models degrade under occlusion, and ViTs improve 
accuracy but require large resources, the hybrid design 
delivers the best accuracy–efficiency balance. 

4.3 Confusion matrix analysis 

The confusion matrix illustrates the classification 
outcomes of the proposed hybrid CNN–ViT model on 
the MFRC test set. A total of 480 masked and 475 
unmasked faces were correctly classified, while 12 
instances were misclassified (5 masked faces as 
unmasked, and 7 unmasked faces as masked). The 
high number of correct predictions along the diagonal 
indicates that the model is able to distinguish 
effectively between masked and unmasked identities, 
with relatively few errors occurring under challenging 
conditions such as low illumination or partial mask 
coverage. The confusion matrix of the proposed model 
(MFRC Test Set) is represented in Figure 2. 

 

Figure 2. Confusion Matrix of the Proposed Model 
(MFRC Test Set) 

The confusion matrix for the MFRC test set. 
Misclassifications primarily occurred between 
individuals with similar eye regions and poor lighting. 
Heatmap confusion matrix showing TP along the 
diagonal and FN/FP off-diagonal. 
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4.4 Ablation Study 

An ablation study was performed to assess the 
individual contribution of each module to the overall 
performance. The baseline CNN-only model (ResNet-
50) achieved an accuracy of 91.5%. Incorporating the 
CBAM attention mechanism increased accuracy to 
95.4%, indicating improved feature refinement. When 
the Vision Transformer (ViT) was added to the CNN, 
performance rose to 96.8%, reflecting the benefit of 
global context modelling. The full integration of CNN, 
ViT, and CBAM yielded the highest accuracy of 
98.2%, demonstrating that the combination of local 
feature extraction, attention reweighting, and global 
reasoning provides the most effective balance. 

 

4.5 Discussion 

The results provide three key insights. First, 
CNN-only baselines perform poorly under partial 
visibility, confirming the difficulty of masked 
occlusion and the necessity of occlusion-aware 
architectures. Second, the integration of CBAM 
improves robustness by directing attention to 
unoccluded regions such as the eyes and forehead, 
thereby reducing misclassification when lower-face 
cues are absent. Third, the combination of CNNs and 
ViTs offers complementary strengths, with CNNs 
capturing fine-grained local texture details and ViTs 
modelling long-range dependencies. This synergy 
enables the hybrid approach to achieve high 
recognition accuracy while maintaining 
computational efficiency. These findings align with 
recent works (Sun & Tzimiropoulos, 2022; Hosen & 
Islam, 2022), but extend the literature by 
demonstrating a reproducible, lightweight, and high-
performing hybrid model that reaches state-of-the-art 
accuracy on standard masked datasets. 

(i) Confusion Matrix (MFRC test set) 

(ii) Model Accuracy Comparison  

The bar chart presents the accuracy of baseline 
models compared with the proposed hybrid approach 
on the MFRC dataset. Traditional CNN architectures 
(ResNet-50 and VGG-16) achieved accuracies of 91.5% 
and 88.9%, respectively, showing sensitivity to 

occlusion. The proposed CNN–ViT with CBAM 
obtained the highest accuracy of 98.2%, 
demonstrating the combined benefit of local feature 
extraction, attention reweighting, and global context 
modelling. An illustration of the model accuracy 
comparison on MFRC dataset is shown in Figure 3. 

 
Figure 3. Model accuracy comparison 

A standalone ViT performed better at 94.7% but 
required higher computational resources. 
Incorporating CBAM into CNN improved 
performance to 95.4% by focusing on unconcluded 
regions. 

(iii) Ablation Study 

An ablation study was conducted to evaluate 
the contribution of each module within the proposed 
architecture. The baseline CNN-only model (ResNet-
50) achieved an accuracy of 91.5%. Incorporating the 
CBAM attention mechanism increased accuracy to 
95.4%, highlighting the effectiveness of feature 
refinement. When the Vision Transformer (ViT) was 
added to the CNN backbone, performance improved 
further to 96.8%, demonstrating the importance of 
global context modelling. Finally, the integration of 
CNN, CBAM, and ViT achieved the highest accuracy 
of 98.2%, representing the optimal balance of local 
feature extraction, attention reweighting, and global 
reasoning. Ablation study results on the MFRC dataset 
is presented in Table 4. 
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Table 4. Ablation study results on the MFRC dataset 

Model Configuration Accuracy 

(%) 

CNN only (ResNet-50) 91.5 

CNN + CBAM 95.4 

CNN + ViT 96.8 

CNN + ViT + CBAM 

(Proposed) 

98.2 

The CNN-only baseline performed weakest at 
91.5%. The addition of CBAM improved 
discriminative feature extraction, while incorporating 
ViT enhanced global reasoning. The combined hybrid 
CNN–ViT with CBAM achieved the best result of 
98.2%, confirming that each component contributes 
additively to overall performance. The result 
compares the accuracy of different architectural 
configurations as showed in Figure 4. 

 

Figure 4. Ablation study results on the MFRC 
dataset. 

The Figure 4 compares the accuracy of 
different architectural configurations. The ablation 
chart illustrates the incremental performance gains 
achieved by integrating different modules into the 
baseline CNN. The proposed hybrid model combining 
CNN, CBAM, and ViT achieved the highest accuracy 
of 98.2%. This progression demonstrates that both 
attention-based feature refinement and global context 
modelling contribute additively to improved 
recognition under mask occlusion 
 

5.  Conclusion and Future Work 

This study presented a hybrid architecture for 
masked face recognition that integrates Convolutional 
Neural Networks (CNNs), Convolutional Block 
Attention Modules (CBAM), and Vision 
Transformers (ViTs). The model was evaluated on 
two publicly available datasets (MFRC and RMFD) 
using a standardized preprocessing and augmentation 
pipeline. Experimental results showed that the 
proposed system achieved 98.2% accuracy on MFRC 
and 97.6% accuracy on RMFD, outperforming CNN-
only and ViT-only baselines. The findings confirm 
three contributions: (i) A reproducible hybrid CNN–
ViT model with attention mechanisms capable of 
robust recognition under mask occlusion. (ii) 
Empirical evidence demonstrating that CBAM 
improves feature focus on unoccluded facial regions, 
while ViTs contribute to global context modelling. (iii) 
A balanced approach that maintains high accuracy 
without excessive computational overhead, 
supporting feasibility for real-world deployment. 
Despite these achievements, the study has several 
limitations. First, the datasets used while diverse do 
not fully capture global demographic variations or all 
possible mask types. Second, training with larger-
scale self-supervised pretraining could further 
enhance performance but was constrained by available 
computational resources. Finally, the current work 
focused on software-level evaluation; hardware 
optimisation and real-time system integration were 
beyond the present scope. Future research should 
expand the dataset to include broader demographic 
diversity, investigate lightweight deployment-ready 
variants of the model for embedded systems, and 
explore integration with other biometric modalities 
such as iris or gait recognition to improve multi-factor 
authentication. In addition, fairness evaluation and 
adversarial robustness testing represent important 
avenues to ensure trustworthy deployment in high-
stakes domains such as border control and financial 
services. 
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