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Summary

This article presents a study and the development of protocols for
concurrency problems in cooperative work applications.We first
present our platform, which allows us to create cooperative
applications without having to manage communications,
consistency and synchronization. In this CORBA bus based
platform, we can distinguish services for continuous stream
transport and services for cooperation. We place special
emphasis on these last services and especially on the two
protocols involved : the Pilgrim and the Chameleon. We show
the approach that induces us to evolve from the Pilgrim protocol
to the Chameleon protocol. The Pilgrim is a token ring based
protocol, which orders access on shared objects to allow the
management of concurrency problems. But the main default of a
token ring based protocol is to visit all sites including no-
producers, therefore we have developed the Chameleon protocol,
which allows the virtual topology to be reconfigured. We
describe these two protocols, we show their performance and we
demonstrate their qualities.
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Fig. 1 CAIF Multimedia Platform.

The design of a cooperative application
integrating multimedia implies various domains: networks,
distributed systems, multimedia, data consistency, Human-
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Machine Interface... Therefore, it is interesting to create a
platform combining the functionalities common to all
types of cooperative applications [1]. It is the case of the
CAIliF Multimedia platform [2,3] that allows us to create
cooperative applications without taking into account
problems of communication management, consistency,
synchronization and multimedia management (Figure 1). It
uses a CORBA bus [4] and provides services such as
continuous stream management, shared data consistency
management, quality of service management, and finally
group communication managing the virtual topology of
cooperating sites, as well as the linkage for continuous
stream transport.

This platform is based on a CORBA bus that manages
problems of heterogeneity, interoperability, portability,
and access to resources. It has four main services:

e The Group Communication service allows the
members of a cooperative application to broadcast
information (only discrete media: text, drawings...)
they produce. All the objects generated and modified
by a user are transported towards the other group
members. This service also manages membership or
departure of the group members, controls message
broadcasting such as video connection requests and
messages of continuous stream control. It must ensure
the consistency of group topology as well as the
integrity and order of messages sent by group
members;

e The Consistency service maintains the distributed
shared memory consistency, i.e. ensures that all the
cooperative application objects, that are replicated on
all sites, are identical for each user. This service
interacts with the communication service to define
messages to broadcast in order to maintain system
consistency. It uses the Regulation module
programmed by the application designer to determine
object management strategies;

e The Audio/Video service is used for continuous stream
transport (audio, video). The buses that are CORBA 2
compliant do not efficiently manage the broadcast of
continuous media. To provide this functionality, we
developed the Audio/Video service of CAIiF
Multimedia that implements an OMG proposal for
standardization of continuous stream transport [5].



2 IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.10, October 2025

The control commands (creation, stop, pause,...) are
carried through the communication service, but the
stream goes out of the CORBA bus because of
performance and easy management of video and voice
synchronization;

e The QoS service allows the users to translate quality
of service requests of applications and physically
reserve necessary resources for it. For example, the
QoS service is used by the Audio/Video service
during the creation of connections for continuous
stream transport.

We can distinguish services for continuous stream
transport (Audio/Video and QoS) and services for
cooperation (Group Communication and Consistency). In
this paper we place special emphasis on these last services
and especially on the protocols involved.

The first part is composed of a description of our
motivations. The second part of this paper presents the
Pilgrim algorithm that is the main component of the CALiF
consistency service. We finish this first part by a Pilgrim
optimization proposal. The main default of a token ring
type protocol is to visit all sites including no-producers, it
is the reason why we have developed the Chameleon
protocol, which allows the virtual topology to be
reconfigured using two communication techniques: a
rotating sequencer for one site and a symmetric approach
for another. This paper ends by a further work part that
explains our new research ways.

2. Communication in Cooperative Work

2.1 Presentation

Cooperative work applications allow distant users
who may have different roles and rights to be interactive.
Many factors can evolve during the life of this kind of
application.

e The workload can vary significantly with the time.
For example, all the cooperative members may have
to react simultaneously to an event, and then to remain
inactive for a long time.

e The workload can also vary in space. Two members
can work together and the others can observe their
exchanges and react when necessary.

e The roles and rights of participants can change. An
observer member (inactive) may become an actor
after a particular event. It is the case for a referee
member who is active only when a fault is committed.

e  The Quality of service can be modified, for example if
a video connection between two sites is introduced.

All these variable parameters show that it is difficult to
work with a fixed virtual topology for communications in
the cooperative world. It seems important to be able to
change this topology dynamically according to the
application requirements.

2.2 Related Work

In a cooperative application, site actions have to be
broadcasted in order on the group. In [7] we distinguish
three types of protocol for group communication:

e Asymmetric protocols: messages are sent to a central
sequencer node that multicasts them in order.

e Symmetric protocols: all sites have the same role; the
management of the message order becomes very
costly.

e Rotating sequencer protocols: they are placed between
the symmetric and asymmetric protocols. The two
major subclasses are the sequencing
acknowledgement strategy and the token strategy.

We will study this last type of protocol, and more
particularly the token strategy: possession of the token
gives a site the right to emit.
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Fig. 2 Multicast Time.

The Pilgrim algorithm [7,8] uses a virtual ring
topology with a token that contains some information such
as the modifications of the Distributed Shared Memory
(DSM) [9,10]. This type of protocol allows us to manage
at low cost the shared data consistency. Furthermore, it is
efficient for cooperative applications. Figure 2 compares
the use of a symmetric technique (multicast) with a
rotating sequencer protocol technique (ring) with four sites
on a 100Mb Ethernet network. The multicast t/n curve
represents a multicast technique with messages n times
smaller than for the ring technique with a token size of t.
Indeed, all modified information by the n persons involved
in a cooperative task are placed on the token. This
corresponds to the multicast of a message, which is n
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times smaller than the token, since each application
member sends only its own modifications: this size is in
reality more important to ensure the consistency of shared
object with such a technique. We can observe that the
token technique is always better than the multicast one. It
is also better than the multicast t/n technique until a token
size of 10 Kbytes. A token exceeds rarely such a size in a
discrete media application, indeed, it transports only
modifications performed by active sites in one ring turn.
Furthermore, we do not take into account the cost of
treatments involved by the consistency management,
which is greater with symmetric protocols. Then, the
technique used by the Pilgrim algorithm is well adapted to
the transport of discrete media in cooperative applications.
However, this algorithm contents itself with working on a
fixed topology, that prevents it from adapting its behavior
to the dynamicity of cooperative work communications.

In the Horus Total protocol [11] the token does not
stay at one sequencer, nor does it cycle through all the
members. It cycles through the current set of senders, so it
can be adapted to the application requirements. In the
Hybrid protocol [12] some processes order messages using
a symmetric approach (passive mode), and others use a
token-site approach (active mode).

The use of multiple types of transmission seems to be
an efficient way to meet with cooperative applications
requirements. It must be possible to change
communication type both dynamically and efficiently.
Some systems [13] build a new topology for each protocol
change. This is costly, making the reconfiguration of
group exchanges more limited. The use of different
transmission types makes system integrity more difficult
to maintain. Indeed, when two sites do not use the same
communication protocol, it becomes difficult to manage
the message order.

3. Consistency Protocol: The Pilgrim
Algorithm

We tried to find a protocol that would reduce the
number of exchanged messages through the network, and
with which it would not be necessary to have a message
for each reading or writing. We wanted the user of a
cooperative application developed with CAIF not to feel
the latency due to shared memory management.

Token ring protocols successively give a token to
each processor. It is not necessary to request the token.
The token ring model could become penalizing if the
system is made up of many nodes some of which are
inactive: the token continues to travel all around the ring
and the time between two turns is wasted. For such a case,
other studies have optimized the critical section
management in distributed systems [14,15,16,17]. In
cooperative work the number of sites is rather low. For
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Fig. 3 Pilgrim large view.

In this situation, we developed an algorithm, which
uses the token technique (Figure 3). But in our algorithm,
the token is not a simple variable that is successively
transmitted to each node of the ring, but a more complex
data structure that contains the updates of shared data.
These data are carried through the ring on the token,
named Pilgrim. When the Pilgrim arrives at a site, it
delivers updates from other sites and it recovers values,
which have been modified during the last turn to carry
them through the ring. We present this first protocol in
four sections: the informal description, the model and
proof with a finite state automaton and model checker
Spin, performance and then optimization with overlapping
technique.

3.1 Pilgrim Overview

First, we define the major characteristics of our protocol:

e This protocol allows the consistency management of
distributed shared memory using a type of object-
based replicated memory. Each object is only stored
on each site which uses it.

e At time ¢ each object has only one owner that can
write on the object.

e The Pilgrim protocol is a simple writer protocol with
regard to a single object but a multiple writers
protocol with regard to all of the shared memory.

e During execution, only messages, which allow token
circulation are sent: token sending and token
acknowledgement.

Memory Representation

There is an instance of the memory on each site
and the token carries memory updates.
o The Structure of the Token
The Pilgrim is an object array: the objects which need to
be updated. In this array, objects from different sites are
distinguished by separators.
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o Local Representation of the Shared Memory
CAIiF manages a replicated memory. An instance of the
memory is on each site as a double link list of objects.

The Structure of Objects

An object o; owned by a site 7 is composed of four
fields: one command, the parameter of the command, the
rank j of the object in the list i and the data. The command
can have one value among the following: N(null), D(delete
object), C(change object ownership), Q(question to earn
object ownership), A(accept to give up object ownership),
R(refuse to give up object ownership). The parameter is
optional, for example it indicates the number of the asking
site. The rank is the identifier of the object o;. Data size
depends on the cooperative application developed.

Operations on the Shared Memory

We can distinguish five cases:

e Two writing cases: An object owner wants to access
the object in read-write. It can modify the object, but
since it is not the owner, it has to earn the ownership
first.

o A single reading case: If a site (owner or non-owner)
wants to read the object, it reads the local value. Thus,
a reading always returns the value of the local
memory.

e Two delete cases: If a site wants to delete an object, it
has to be the owner, otherwise, it has to first earn the
ownership of the object.

Change of Ownership

When a site S; wants to write on an object o of
which it is not the owner, S; has to send a request
command for the object o via the token.

If the ownership of the object has already been
requested by another site, this request is delayed. If no
request for object o is in progress, the request command
can be sent.

Not all requests are necessarily accepted. We have
given priority to the active owner: if the owner writes on
the object during the last turn of the token, it has to refuse
the request. If not, it has to accept it. When site Sy's
request for an ownership change on object o;; is accepted,
it is responsible for sending the owner change command
via the token.

Data Deletion

In a cooperative system, several members work
toward the same goal and they share data. If a member can
delete all the data it owns, some useful data may
unfortunately be deleted. That is why we added another
list WB (Wastebasket) where deleted object are

temporarily stored. It is still possible to recover an object
stored on the WB list.

Token Treatment

When the token arrives, two types of operations are
possible: operations on data, and operations on ownerships.
e operations on data:

When the token arrives on a site S;, it is composed of the
updates made from other sites. The data owned by S, if
modified during the last turn of the token, are placed on
the token that carries the new values.

e operations on ownerships:

It is possible to modify the ownership of an object. All
commands concerning ownership management are sent
through the ring via the token.

When the token arrives, two treatment phases are
needed: the reading of the token which allows the recovery
of information from the other sites of the system; the
writing on the token which allows updates, creations,
deletes, ownership changes or answers about request
commands to be sent to the other sites.

3.2 Proof and Validation

To validate our distributed algorithm, we have used
two classical techniques: a finite state automaton to proof
some Theorems and the model checker Spin to show that

our protocol has no deadlock.
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Fig. 4 Pilgrim Finite State Automaton.

We propose a model of our algorithm with a finite
state automaton made up of 8 states and 8 transitions
(Figure 4).
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Let E be the set of states containing » elements and T
the set of transitions(events) containing m elements, the
automaton edges represent an application from ExT>E.
The structure created is theoretically a graph with n.m
edges. In our example n=8 and m=8, so the mathematic
definition would impose 64 edges. But some of them are
impossible. If we strictly abide by this definition, we have
to create a trash state which would receive all impossible
edges. To simplify our graph we have not created this state.
In [18], we discuss the consequences of each event. For
each state we also state 10 rules defining the automaton,
and especially the impossible events.

We demonstrated in [18] the theorem of mutual
exclusion for writing on a shared object and a second
theorem called the liveliness theorem. If we are working
on local object lists, the first theorem (mutual exclusion)
demonstrates that an object is only on one list (it has only
one owner), while the second theorem (liveliness)
demonstrates that an active object is necessarily on a list.
We call an object active when it has been created and not
deleted: in a cooperative drawing editor it is a visible
object. In this case, an object always has an owner;
otherwise it cannot be deleted or modified.

Mutual Exclusion Theorem:

The Pilgrim protocol guarantees mutual exclusion for
writing on a shared object.

Liveliness Theorem:

An object always has an owner or has one after finite time.

Pilgrim Validation

To validate our protocol, we used the SPIN model
checker [19]. We have built a model using PROMELA,
SPIN's input language. Our work could be decomposed
into two parts: the simple model and the complete one.
Two types of message are carried through the ring : the
Pilgrim and the Acknowledgement (figure 5).

e Simple model
The first model is composed of three sites. These sites
share only one byte. At the initial state, node number 1
owns the variable. Each site may request to earn the
ownership, and then can write in the variable.
When a site receives the token, it updates its local variable
instance and eventually the token. When the token
treatment is done, the site sends the token to its successor
in the virtual ring and then sends an acknowledgement to
its predecessor in the virtual ring. After a given amount of
time, if no acknowledgement is received, the site sends the
token to the successor of its successor and so on. Complet
model
e The second model is more complete, it is composed of
four sites which share three bytes. Functionalities are
identical to those of the first model.
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Fig. 5 Spin Simulation.

Figure 5, we show an abstract of the message
sequence chart given by XSPIN. We can observe an owner
changing phase: the owner of the third variable changes.

- At state 3515, node 1 receives the pilgrim,
node 2 asks to earn the ownership of the third
variable.

- Atstate 3523, node 1 accepts.

- At state 3563, node 2 changes the ownership
of the third variable and it becomes the new
owner of the third variable.
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Fig. 6 Multi-broadcast.

These two models, verified using a maximum
search depth = 1000, was found errorless. Therefore, we
could think that our protocol was validated by SPIN.
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3.3 Pilgrim performance

In order to determine the value of creating groups
in an operation such as broadcasting, we have carried out
tests on MPL.

Multi-broadcast is an important operation in a
cooperative application because all participating members
broadcast simultaneously.

This operation is very expensive, and the user should
not feel the latency of its management. In [20], reaction
time, ensuring the clarity of the operation, is defined as
less than a second.

On the curves shown in Figure 6, multi-broadcast is
implemented using MPI routines and the Pilgrim
algorithm over MPI. Each node broadcasts 512 bytes. We
can observe that if there are more than 10 participating
members, broadcasting time exceeds one second. In this
case, it would be useful to create restricted cooperation
groups in which this multi-broadcast operation would be
more efficient. Indeed, the network load decreases with
this technique.

Partitioning into groups enables this multi-broadcast
operation to increase its performances and makes the
operation clear to the users.

3.4 Pilgrim Optimization: Overlapping Technique

Description of the Optimization Implementation
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Fig. 7 Optimizations of Pilgrim Processing.

Time Savings

Waiting for Pilgrim

We have implemented the Pilgrim algorithm over
CAlifCom. This algorithm use a virtual ring to broadcast
information on the DSM (Distributed Shared Memory)
and to manage its consistency. In such an algorithm, the
latency between an emission and a reception is
proportional to the number of sites, the communication

times and the Pilgrim token processing. In our
implementation we have focused on reducing of this
processing.

A conventional approach is shown in the left part of
Figure 7. We see that implementing the Pilgrim algorithm
can be broken down into several stages:

e  Pilgrim receipt
e  Pilgrim processing

- reading the Pilgrim token and updating the DSM
with objects it contained. When a modified object
is met in the Pilgrim token it is updated in the
local DSM.

- reading the DSM to list all objects modified since
the last receipt of the Pilgrim and updating the
new Pilgrim with the above list.

e Pilgrim emission

Scanning the Distributed Shared Memory can be a long
operation if there is a great number of objects to examine.
We can save time by reducing the DSM analysis and by
postponing its update: that is the overlapping technique.
We can see in the right part of Figure 7 that some
optimizations are possible for Pilgrim processing:

e The DSM can be updated after the token emission, so
this processing is performed between two Pilgrim
receipts. When the Pilgrim arrives, the updates it
contains are copied in a buffer, and used later.

e Building the new Pilgrim can also be optimized. We
use a temporary local Pilgrim in which we continually
put the objects modified on the local site since the last
receipt of the token. So, when it arrives, a DSM
scanning is not necessary, all changes are already
available in this temporary token. It is a fast operation,
we just need to copy the temporary list in the real
Pilgrim. With this method we can build a new
temporary Pilgrim during the token processing.

In Figure 7 we suppose that the time between two
Pilgrim receipts is longer than the token processing time.
If it is not the case, the processing is performed
concurrently with the DSM update. So the efficiency of
this technique grows with the number of cooperative sites,
which increases the latency time and allows the DSM to be
updated before a new Pilgrim receipt.

In our implementation we try to hide from the
cooperative application users the operations performed to
carry out shared object consistency. Operations are
buffered, and accesses to DSM objects synchronized. So,
there is no latency feel due to pilgrim processing.

Time savings generated by this implementation is
shown in Figure 7.
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Tests with optimized Pilgrim

We performed all tests on 166 Pentium processors
connected by a 10Mb Ethernet network. We want to show
that CAIiF allows us to develop efficient cooperative
applications without using very powerful machines.
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Fig. 8 Overlapping.
Figure 8 shows the difference between our

implementation and the conventional approach to Pilgrim
processing (described in the previous section).

The comparison is made for 2 and 5 machines. We
see that for the conventional approach, the number of
rounds performed by the Pilgrim in one second decreases
proportionally to the size of DSM. Indeed, when the
number of shared objects increases, the time needed for
scanning all of them also increases.

When we used the overlapping technique we
implemented, application performance are improved.
Moreover, when the DSM update time is shorter than the
time between two Pilgrim receipts, DSM size increase is
not very detrimental to performance. As we can see in
Figure 8 the difference between the two techniques grows
with DSM size until it reaches a given number of objects.
This point corresponds to the critical size, beyond which
the amount of time needed to perform the DSM update
exceeds Pilgrim travel time. So it arrives during the
memory update and cannot be totally processed before the
end of this operation, due to consistency problems.
Therefore, the difference between both techniques is
smaller, but our implementation is still better.

We observe that our implementation is efficient: for
very large DSM sizes the number of rounds per second
never falls below 12, and this size involves a very large
number of shared objects. This is still an acceptable time
for a cooperative application, since users cannot feel such
a latency.

It seems important to indicate our implementation
performance according to Pilgrim size. This size depends
on to the cooperative application type. A shared text editor

requires a smaller Pilgrim than a cooperative drawing
application.
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Fig. 9 Optimal Pilgrim Size.

In Figure 9, we see that the optimal Pilgrim size is
between 5000 and 10000 bytes. But for 5 cooperative
members, performance does not decrease proportionally to
Pilgrim size. Pilgrim implementation over CAliFCom is
efficient for all types of discrete media applications, where
the size of objects is not too great and no synchronization
between sites is needed.

However, we cannot efficiently manage continuous
media applications which require great outflows and
synchronization methods. But continuous media streams
do not need consistency management. Therefore, several
algorithms can be combined in such applications:

e Pilgrim algorithm for consistency management of
shared objects;

e Continuous media management algorithm for audio
and video.

4. Communication Protocol: The Chameleon
Algorithm

4.1 Description

CAIiF Multimedia uses distributed shared memory
to manage the consistency of discrete media. The main
part of the platform is the communication service. It
allows cooperating members to broadcast their information.

All the modified objects of the distributed shared
memory are transported by way of this service. The
consistency service interacts with this service to maintain
the integrity of the application.

We chose to develop a new token strategy based
algorithm. The originality of these algorithm, named
Chameleon, is to allow the virtual topology to be
reconfigured using two communication techniques: a
rotating sequencer for one site and a symmetric approach
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for another, for example. Thus, the token only visits the
active sites. Another important characteristic of this
algorithm is that the representation of the virtual topology
is a distributed shared object and is transported by the
token.

Ring topology is more efficient than a full connected
network topology for a multi-broadcast operation;
however this tendency is reversed when the number of
active sites decreases. So, we use the second method
(symmetric) for the sites which do not participate actively
in cooperative work to complete the ring which links the
active sites.

4.2 Site States

Actors of a cooperative application can have
different roles and rights, thus implying that sites can have
different states:

e Producer-Consumer (PCo): The site modifies the
shared data. It receives information from the other
producer sites and sends the result of its operations to
the next producer through the token.

e Tutor Producer-Consumer (TPCo): The site modifies
the shared data and sends the results of its operations
to its next producer and to the sites for which it is the
tutor. A tutor is a member of the virtual ring, whereas
a tutored site is not a member of the ring but depends
on a tutor.

o Simple Consumer or Tutored site (SCo): The site does
not modify the shared data; it only receives
information from its tutor via an inactive copy of the
token. It never broadcasts a token.

o Simple Producer (SP): This site is the only producer.

Local Index Narieg 1)
) Localimation: .. |
REF: NULL
MNext Site Tnden i S S
5 REF: ref?
Name: 3.
Wit B S Lot |2
6 Name : 4
Localisation: .. |?
Number of REF : ref4
Tutored Sites Name: 5
3 Localisation : ...
REF: ref5
1

Virual Topology Representation

Fig. 10 Token Treatment.

The programmer of a cooperative application has
to choose a policy for the management of the site states.
For example, if a PCo site is inactive for a given time it
becomes SCo. Or, for a given site it may be impossible to
be producer: an observer site will always remain SCo.

The evolution of virtual topology is dynamic and
does not require reconstruction, so it is not very costly. It
is based on a ring topology, but it can evolve either
towards a centralized system if there is a Simple Producer,
or towards the use of several techniques: a ring between n

sites and a centralized system from a node. The
Chameleon algorithm manages the membership of a site
whatever its state may be.

4.3 Management of active and inactive sites

The Token

The token is not a simple tool allowing a site to
broadcast, it contains the virtual topology representation.
The consistency of this topology has to be maintained, to
ensure that all the sites have the same view of the system.
The nature and the treatment of the token depend on the
state of the sites which receive it.

Figure 10 shows the token treatment for SCo and
Producer sites. Site 2 is the tutor of sites 3,4 and 5. Each
site has a local copy of the virtual topology representation.
It knows its local index, the index of the next producer, its
number of tutored sites, the total number of sites, its state,
and it has an array containing the description and
references of the sites corresponding to these indexes.

BEGIN

receipt of the token

case state of local site of :

PCo:
consume token (update of DSM, update of virtusl topology ...)
modify token (the local modifications are put on the token)
send token to next site

consume token
TREGE
consume token
medify token
send token to next producer
for i =1 to NbTutored do

(figure 10: stage 3)

send token to tutoredfi] i(figure 10: stages 4,5, &)

END.

Fig. 11 Broadcast Algorithm.

In the simplified algorithm (Figure 11) we see how
the token is treated when there is no change of state, no
membership request and no video channel creation request.

We can see that when a TPCo site broadcasts the
token, it begins by sending it to the next producer. As
broadcast is a blocking operation, the TPCo site has to
wait until it is terminated. After that, the token is sent in
parallel by the TPCo site to its tutored site(s) and by its
next producer to another producer. So, at the same time,
two sites are treating the token. There is no problem of
consistency management because one of these two sites is
SCo and cannot modify the distributed shared memory.

Several events can lead SCo sites to send messages:
for example, they may have to become PCo if they have a
modification to carry out, or they may have to manage the
membership of a new site. In such a case, the SCo site can
send messages to its tutor which stocks and treats them
when it is in possession of the token. In this way, the
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consistency of the virtual topology as well as the order and
integrity of sent messages are maintained.

Change of state

The policy changing site states is chosen by the
cooperative application designer. When the change of state
criterion is reached, the virtual topology has to be
modified. This modification depends on the state of the
site which causes the change.

When a PCo site has to become SCo, it waits for the
token, then it modifies the virtual topology contained in
the token and routes this token which will broadcast this
change of state. The modification of the virtual topology
on the token is performed by a calculation function which
builds a new topology according to the current topology
and to all waiting requests (membership, departure...). If
this site wants to become a producer again, it has to send a
request which will not be transported by the token (a SCo
site cannot send a token); this request will be treated by its
tutor. Then, if a TPCo (tutor) site becomes Simple
Consumer, it has to:

find new tutor(s) for its tutored site(s);
find a tutor for itself;

modify the virtual topology on the token;
send the token to the next producer site;
send the token to its tutored site(s).

Each modification of a site state leads to a dynamic
reconfiguration of the virtual topology. In this case several
policies are possible for the new configuration calculation.
For example, the positioning of the tutored sites can be
either centralized (a site is the tutor of all the SCo) or
balanced (a site is the new tutor if it has less tutored sites
than the other producers). These policies are chosen by the
programmer according to the type of application he is
building.

4.4 Fault Tolerance

We have introduced additional controls to limit the
errors in case of fault on a site and to obtain a fault tolerant
system.

With a system composed of producer sites, when a
token is sent, the sender site waits for an
acknowledgement which allows the emitter to control the
good circulation of the token on the virtual ring. It means
that the successor has received the token and also that it
has treated this one. The successor emits the
acknowledgement only when it has treated the token and
just before to send it to its own successor.

~" T\ Token Emission

Acknowledgment

Fig. 12 Faults Treatment.

@ Faulty Site

The delay overrun is calculated according to the
token size and to the known characteristics of the network.
We deal only with site faults, not with network problems.
When the time limit between an emission and a reception
is reached, we suppose that the receptor site is faulty. The
predecessor site of the faulty one is then in charge of
restoring the objects consistency, in particular if there are
some ownership notions. We work on a replicated shared
memory, thus, all sites have a local copy of the objects.
Furthermore, a new communication topology has to be
calculated and installed. Then, the protocol takes off the
faulty site and gives the token to its successor.

The faults treatment becomes more complex when
Simple Consumer sites are involved. We distinguish
several cases:

e If the producer which follows the tutor is faulty (5),
the new topology has to be calculated and the token
has to be sent to the new following producer (6) but
also to the tutored sites (3 and 4) in order to inform
them of the new topology (Figure 12 A-B),

e [If a tutored site is faulty, its tutor waits the next turn to
correct and broadcast the new topology. The tutor can
not treat a new token as it has not received all the
acknowledgements it was waiting for, (Figure 12 B-C),

e If the tutor site is faulty, its predecessor launches the
calculation of a new communication topology to
remove this site and to find a new tutor for the Simple
Consumer sites (Figure 12 D-E).

4.5 Chameleon Proof and Validation

We have used the SPIN [HOL91] model checker as
validation tool, in particular the X version: Xspin.

Spin allows us to detect dead-locks or possibly bad
assertions. SPIN algorithms are expressed in PROMELA
which is a no-determinist language. We have proceeded in
3 stages on a 6 sites model [Gar01]:

e a first simplified version of the Chameleon with a
static virtual architecture. In this version, 6 processes
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exchange the token: 3 Tutor-Producer-Consumer sites
(TPCo) and 3 Simple-Consumer sites (Sco). The aim
is to put in place communications in the virtual
architecture. On Figure 13 we can see an execution
sequence of this first version. On this figure, the labels
of the modeled architecture (3!token...) correspond to
the sending of the token sequences. We can observe
their order on the Xspin simulation. The arrows
represent the token emission, the first column match
with site 1, the second with site 2...

e a second PROMELA version of the Chameleon
algorithm proposes a system where the architecture is
dynamic. It is then interesting to verify that there is no
dead-lock and that each site can pass in one of the
state Pco, TPCo, Sco or SP.

e In a last version we have tested the faults treatment.
When a site sends the token, if it does not receive an
acknowledgement, it deletes the faulty site, it becomes
the new tutor of the sites tutored by the deleted one,
and then it transmits the token to its new successor.

2ltokencopy

3ltoken

1ltoken @
v
/e
~“  fGltokencopy
@ Shtoken

a) Modelled Architecture

b) Xspin Simulation
Fig. 13 Xspin and Modelling.

For the last PROMELA version, the delay overrun
has been managed as a message: if a site is faulty when it
receives the message, it sends to its predecessor in the
logical ring a timeout message instead of an Ackn
message. The different versions of the Chameleon protocol
we have tested have not cause some errors. We have done
these verifications with a 10000 depth.

4.6 Chameleon Performance

We have implemented the Chameleon algorithm in
the CAliF Multimedia group communication service. This

algorithm allows us to manage communications,
consistency of the virtual topology representation on each
site, and the establishment of transport channels for
continuous media. The communication service of our
platform is implemented with Orbacus 3.2.1 [21] and C++.
The tests are performed on a 100 Mbit LAN with a
PentiumlII PC cluster.

Communication

A first test presents gains obtained when a PCo site
becomes Sco, and allows us to see the impact of site speed
on the group behavior (Figure 14). In this test sites called
Fast sites are equipped with 100Mb/s Ethernet cards and
slow sites with 10Mb/s cards.

For the start configuration with 4 fast active sites
(PCo), we see that the time taken by the token to perform
3000 turns increases with its size. For a token containing
2500 elements of 4 bytes (10 Kbytes) it is 12.5 seconds.
When one of the active sites becomes inactive (SCo),
performance is improved from 8 percent for a 10-element
token to 20 percent for a 2500-elements token. The gain
depends on the token treatment time. If this time is great
(in terms of the token size), the obtained gain will also be
greater because the treatment of the token is performed in
parallel on two sites.

A0 | —=— 4 fast PCo

B Jfast PCo and 1 fast

I SCo
—— 3 fast PCo and 1

H slow PCo
—+— 3 fast PCo and 1

T slow SCo
/‘/ .
%

10 500 1500 2500
Token size (array of x floats)

Time for 3000 turns (s)
_ == [ [ (o]
[ TR o B s Y o I N o | R o |

Fig. 14 Introduction of different kinds of salve sites.

For the start configuration with 3 fast PCo sites and 1
slow PCo, it is efficient to place the slow site in SCo state
for a token size below 1500 elements (6Kbytes). Beyond
that point, performance decrease due to the congestion
point represented by the slow site. Indeed, the tutor of the
slow site has to wait that this last has performed its
treatment before receiving the new token.

These tests give good results considering that most
cooperative applications use a small (less than 5 Kbytes)
token to manage discrete media consistency. Group auto-
organization needs to answer several questions, "when and
how to modify group topology?...", and needs also to
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know the impact of such a modification according to site
power, active/inactive active sites ratio. So, we can
propose a group service on top of CORBA, which offers
functions to manage operations in the group, but some
parameters have to be adjusted to meet particular
cooperative application requirements.

These tests give good results considering that most
cooperative applications use a small (less than 5 Kbytes)
token to manage discrete media consistency.

Placement

We can study the different ways to place tutored
sites. The two main policies are represented on Figure 15:

e In the first case (a), a producer site is appointed to be
the tutor of all SCo sites.

e In the second case (b), the new tutored sites are
allocated to low loaded producers in order to balance
the treatments.

It is also possible to use intermediary solutions: random

for example.

(a) Centralized Approach

(b) Balanced Approach

Fig. 15 Tutored Sites Placement.

We see on Figure 15 that the balancing of tutored
sites is logically better. Indeed, in 5 logical stages, the
token which starts up from site number 1 performs a
complete ring turn and then is located on site number 6,
while in the case of a centralization of tutored sites it only
performs one ring turn.

The way to place tutored sites has to be chosen by the
cooperative application programmer according to its needs.

Our tests show (Figure 16) the effect of the number of
tutored sites and the choice of their tutors on the
performance. We work with a virtual topology with 6 sites,
and can see that the increase of the SCo site number
improves performance. The optimal number is not,
however, the maximum one. Indeed, when it becomes
greater than the number of producer sites, there is a
problem of congestion. The token comes back to a TPCo
site before the tutored sites have received and treated their
previous copy. As broadcast is a blocking operation (for

fault tolerance and synchronization), the TPCo site has to
wait for the SCo site release. If multicast is not
implemented in the system used, the balancing technique
is better than the centralized one. With 3 TCPo and 3 SCo
sites the centralized technique is 25 percent slower than
with balanced tutors. Indeed, when there is only one tutor
the TPCo site have to wait one stage more for its tutored
site release.

35 —a— Balancing of tutored sites
w30 & Centralized tutar H
w
g 25 =
o 20 —— v
8 -

o 15
:o: S
o 10
E
F &
a T T T T

Number of tutored sites

Fig. 16 Balancing of Tutored Sites.

These tests are made to help the cooperative
application programmer using CAIliF Multimedia to
choose the best policy for the change of site criterion or for
tutor balancing. This policy is linked to the type of
application to be written and to the available technology: a
centralized tutor is better if multicast exists on the system
used.

5. Conclusion and Further Work

In this paper we have presented, Pilgrim and
Chameleon algorithms which allow consistency
management in collaborative work. Indeed, in this type of
applications, several users handle simultaneously shared
objects. We have also presented the need of adaptability of
this type of system, due to work load fluctuations.

Some existing group communication protocols allow
the transmission mode to evolve dynamically, other
algorithms offer a distributed shared memory consistency
management support. The Chameleon algorithm combines
these two characteristics. It is used in the CAIlF
Multimedia group communication service. It manages
communications and consistency of the virtual topology
representation. It offers a support for distributed shared
memory consistency management. It also manages the
connections for continuous media transport. Tests show
that it is efficient, even on high speed networks because
token treatment time is not linked to transmission time.
Users of this service have to take into account time savings
obtained with the application of different policies and the
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type of application they want to build: telemedicine or
cooperative  telemaintenance have not the same
cooperation criteria.

Pilgrim algorithm allows us to manage consistency of
distributed shared memory. It uses the principle of
property on shared objects. Some optimizations have allow
us to implement a better version of this protocol on a token
ring topology. This type of fixed topology limits its
efficiency for collaborative applications. A complementary
use of the Chameleon algorithm is an interesting
alternative to this problem, it allows us to take advantage
of robustness an performances of these two combined
algorithms.

We are validating the Chameleon algorithm using a
finite state automaton and a Model Checker. We also are
implementing a telemedicine and a telemaintenace [22]
application using CAliF Multimedia.
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