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Abstract 
Hashing has progressed from a simple constant-time lookup 
mechanism to a diverse set of algorithmic paradigms that 
underpin efficiency, security, and large-scale data 
management in modern computing. This survey organizes 
existing approaches into six principal categories: division-
based hashing, dynamic hashing, cryptographic hashing, 
geometric and robust hashing, Bloom filter methods, and 
deep hashing. For each category, the paper outlines the key 
design principles, operational objectives, and characteristic 
performance trade-offs. The discussion connects these 
families of algorithms to their main application areas, 
including authentication, multimedia forensics, distributed 
storage, web systems, and approximate nearest-neighbour 
retrieval. Through comparative analysis, the survey 
emphasizes that the choice of hashing strategy is inherently 
context-dependent, shaped by constraints such as collision 
tolerance, memory efficiency, and semantic accuracy. 
Distinct from earlier reviews, this work brings together 
conventional and learning-based hashing techniques within a 
single analytical framework, highlighting the emergence of 
hybrid models that balance scalability, security, and 
similarity preservation in AI-driven and resource-limited 
environments. 
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1. INTRODUCTION 
 

Hashing in general is a mechanism that 
converts variant size string into a fixed size string using 
a hash function. It is a fundamental operation that maps 
input objects from a large or unbounded domain to a 
limited address space through a deterministic 
transformation known as a hash function [1] [2]. 

 
 
Figure 1 Hash function takes input and converts it to 

fixed-size string 
 

It has been extensively adopted in performance-
critical data processing pipelines due to its constant-
time average-case lookup behavior and its ability to 
eliminate the need for ordered data structures or 
auxiliary indexing layers [3]. Beyond lookup 
acceleration, hashing also supports integrity 
verification, identity authentication, cache 
coordination, and content-based detection, thereby 
rendering it a multi-domain building block in data 
systems, communication networks, and security 
infrastructures [2] [4]. 

Historically, hashing techniques were 
conceived for static file organizations and compiler 
symbol tables. Subsequent developments introduced 
dynamic hashing to address scalability and collision 
growth in mutable datasets [3]. In parallel, 
cryptographic hash functions emerged as one-way 
constructs for password storage, message 
authentication, and digital signatures, where collision 
resistance and pre-image hardness rather than access 
latency are the primary objectives. In multimedia and 
computer vision, geometric and robust hashing 
methods have been devised to preserve similarity under 
transformations such as rotation, scaling, compression, 
or noise while still discriminating between dissimilar 
content [2] [1]. Probabilistic hashing, exemplified by 
Bloom filters, enables memory-efficient set 
membership tests at scale in distributed environments 
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[2]. More recently, the proliferation of high-
dimensional data retrieval has motivated deep hashing, 
wherein neural networks optimize binary embeddings 
to preserve semantic proximity in the Hamming space 
[2]. 
 
 

2. HASHING ALGORITHMS 
A. The Division Method 

The division method is a hashing technique 
where a key x is mapped to a hash table index using the 
formula:  

H(x) = x mod m                 (1) 
If the table index starts at 1 instead of 0, the formula 
becomes: 
              H(x)  =  x mod m +  1.        (2) 
The value of m must be chosen carefully, often as a 
prime number, to help distribute keys evenly and 
reduce collisions, especially when keys follow patterns. 
For example, if m = 10 and the key is 123456, the result 
is 6, meaning the key is stored at index 6. If m = 13 and 
the key is 987654, the result is 5, so the key is stored at 
index 5. However, this method can still cause clustering 
when many keys share similar structures (e.g., ending 
in the same digit), and performance may decline if keys 
are not well distributed [2]. 
 
B. Dynamic Hashing 

Dynamic hashing is a set of techniques that let 
hash tables grow or shrink as data changes, overcoming 
the fixed-size limits of static hashing and maintaining 
fast lookup, insertion, and deletion. Approaches such 
as extendible hashing, linear hashing, and cuckoo 
hashing minimize collisions and avoid expensive full 
rehashing, keeping performance stable as key 
populations evolve. These methods are widely used in 
transactional databases, file systems, distributed 
networks, routing tables, and security systems where 
balanced data distribution and real-time responsiveness 
are essential. Their adaptability also makes them 
suitable for SDN (Software-Defined Networking) 
environments, were traffic patterns and data volume 
shift frequently. Current challenges include optimizing 
memory use, strengthening fault tolerance and security, 
and developing energy-efficient variants to meet the 
scalability demands of emerging domains such as IoT 
and AI [2] [3]. 

        A typical example is extendible hashing, which 
stores keys in buckets referenced by a directory 
indexed by the low order bits of the hash value. 
Suppose the directory depth begins at 𝑑 = 1, giving 
two buckets, 0 and 1. Inserting key 𝐾ଵ (bits 00) places 
it in bucket 0. Inserting 𝐾ଵ (bits 01) maps to the same 
bucket, causing overflow. Instead of rebuilding the 
table, only this bucket is split: its local depth becomes 
2, the directory doubles to four entries (00, 01, 10, 11), 
and the affected keys are rehashed so that 𝐾ଵ → 00 and 
𝐾ଶ → 01.  Inserting a third key 𝐾ଷ  with bits 10 then 
maps directly to bucket 10 without further restructuring. 
This illustrates the core property of extendible hashing: 
only the overflowing bucket grows, preventing global 
rehashing and allowing incremental expansion [2]. 
 
C. Cryptographic Hashing 

Cryptographic hashing is a one-way process 
that converts any input into a fixed-size digest used for 
security purposes such as password storage, digital 
signatures, and data integrity. Unlike dynamic hashing, 
which resizes tables for performance, cryptographic 
hashes focus on being irreversible and collision 
resistant. Algorithms like MD5, SHA-1, SHA-2, and 
SHA-3 take a message of any length and generate a 
unique output. For example: 

 
 SHA-1("Hello") = 
“f7ff9e8b7bb2e09b70935a5d785e0cc5d9d0abf0” 
 
Even changing one letter produces a completely 
different hash, proving the avalanche effect [1] [2]. 
 
D. Geometric and Robust Hashing 
        Geometric hashing is mainly used in computer 
vision and computational geometry to match shapes or 
features even when objects are rotated, scaled, partially 
hidden, or noisy. Its key strength is efficiency, making 
it suitable for tasks like pattern recognition, 3D object 
matching, and protein structure alignment. It enables 
partial recognition by storing geometric relationships 
rather than raw data. Robust hashing, on the other hand, 
focuses on generating compact signatures that survive 
acceptable changes to the content. Instead of matching 
exact data, it preserves the “essence” of audio or 
images, allowing identification even after compression, 
resizing, or filtering. Robust audio hashing powers 
services like Shazam, while robust image hashing is 
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used in watermarking, fake-image detection, and 
copyright protection. Unlike cryptographic hashes, 
robust hashes remain similar when the content is 
slightly modified, making them ideal for multimedia 
authentication and retrieval [2]. 
      A typical example is the classic geometric hashing 
pipeline. A model object is first represented by feature 
points. A pair of non-collinear points (𝑝௜  , 𝑝௝) is chosen 

as a basis, and all other points are transformed into this 
basis to produce invariant hash keys. These keys are 
inserted into a hash table. Later, when a query image is 
processed, the same basis-selection and hashing step is 
repeated. If many of the resulting keys vote for the 
same model object, the system declares a match—even 
if the object is scaled, rotated, or partially occluded. 
This ability to match transformed or incomplete data is 
what makes geometric hashing valuable in computer 
vision and bio-structure alignment [6]. On other hand, 
robust hashing, focuses on multimedia signals. Instead 
of hashing exact bytes, it produces a short signature that 
remains stable after acceptable modifications such as 
compression, resizing, or filtering. This allows systems 
to recognize the same content even when it is not bit-
identical. For example, matching a recompressed 
image or a low-quality audio snippet. Robust audio 
hashing powers apps like Shazam, while robust image 
hashing is widely used in copyright tracking and fake-
image detection. Unlike cryptographic hashes, robust 
hashes are designed to stay similar when the content is 
slightly modified, which makes them suitable for 
authentication and large-scale media search [7]. 
 
E. Bloom Filter Hashing 
       Bloom filters are space-efficient probabilistic data 
structures that enable constant-time membership 
queries while avoiding the storage cost of the full 
dataset. An item is processed by multiple independent 
hash functions, each of which maps it to a bit position 
in a fixed-size array. These positions are set to 1, and 
future lookups check the same positions to determine 
whether an element is possibly present or absent. The 
only source of error is the presence of false positives, 
whereas false negatives never occur; if a Bloom filter 
reports that an item is not stored, the result is 
guaranteed correct. [2] This behavior makes Bloom 
filters well suited for systems where memory efficiency 
and lookup speed are more important than perfect 
accuracy. To illustrate the mechanism, consider a bit 

array of length 𝑚 =12, initialized to zero, and 𝑘 =3 hash 
functions. Inserting two elements fills several bit 
positions, and although distinct items may set 
overlapping bits, the structure remains compact in 
constant time. When a third element is queried, the 
filter returnsdefinitely absent if any of the 
corresponding bit positions contain zero, and possibly 
present if all are set to one. The probability of a false 
positive after inserting 𝑛 elements is commonly 
approximated by: 

  p ≈ ൬1 − eି
ౡ౤

ౣ ൰
୩

            (3) 

   
Demonstrating that the error rate can be tuned 

by adjusting the number of hash functions and the bit-
array size. Bloom filters are widely deployed in large-
scale systems, including web caches that advertise 
stored URLs without transferring full lists, distributed 
databases such as Cassandra and HBase that avoid 
unnecessary disk reads, and networked systems that 
reduce message overhead in membership protocols. 
They are also used in spam detection, blockchain 
networks, and content delivery architectures where 
bandwidth and memory constraints are critical. 
Although classical Bloom filters remain dominant, 
more recent variants, such as Xor Filters and Binary 
Fuse Filters, improve memory usage and query 
throughput while maintaining the same probabilistic 
membership model [8][9]. 

 
F. Deep Hashing 
        Deep hashing is a learning-based hashing 
approach that uses deep neural networks to generate 
compact binary codes while preserving semantic 
similarity between data items. Unlike traditional 
hashing, which relies on hand-crafted features, deep 
hashing learns both the feature representation and the 
hash function jointly, allowing the model to optimise 
feature extraction and hash generation in a single end-
to-end process. This makes it highly effective for large-
scale similarity search, especially in domains where 
visual or semantic relationships cannot be captured by 
manually designed features [5]. A typical deep hashing 
system is trained on labelled or pairwise-related data so 
that samples belonging to the same class (e.g., two 
images of the same person) are mapped to nearby 
binary codes, while unrelated samples are pushed 
farther apart in Hamming space. After training, an 
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image may be converted into a 64-bit code such as: bଵ

= (1011010010111001 … ) and a visually similar 
image may produce: 𝑏ଶ = (1011010010111101 … ) 
differing by only a few bits. Because retrieval is 
performed using Hamming-distance lookup rather than 
high-dimensional floating-point comparison, the 
system can search millions of stored items in real time 
using only lightweight bit operations. This gives deep 
hashing a strong advantage in large-scale image 
retrieval, video deduplication, face recognition, cross-
modal search (e.g., text–image matching), and 
recommendation engines where low latency and 
memory efficiency are essential 
        Compared with traditional hashing and 
conventional deep feature indexing, deep hashing 
offers three main benefits: First, it compresses high-
dimensional features into short binary codes, reducing 
storage requirements. Second, it enables millisecond 
lookup time over massive datasets through Hamming 
search. Third, it scales gracefully as the size of the 
database grows, since code length remains fixed even 
when the number of samples increases. These 
properties have made deep hashing a key component in 
modern computer vision pipelines, multimedia 
databases, and AI-driven content retrieval systems [5]. 
 

3. APPLICATIONS OF HASHING 
ALGORITHMS 

        Hashing techniques are deployed across a wide 
spectrum of computing domains due to their ability to 
provide constant-time lookup, compact representation, 
tamper detection, and similarity preservation under 
varying constraints [3]. The choice of hashing method 
is dictated by operational objectives: classical and 
dynamic schemes priorities access latency and 
scalability; cryptographic hashing enforces integrity 
and trust; robust hashing preserves perceptual structure 
in multimedia pipelines; Bloom filters optimize 
probabilistic membership under memory constraints; 
and deep hashing enables efficient large-scale retrieval 
in high-dimensional semantic spaces. The following 
subsections survey the dominant application contexts 
aligned with these distinct hashing families. 
 
A. Security and Integrity 

Cryptographic hashing is central to authentication, 
integrity assurance, and non-repudiation. Unlike 
classical hashing, these functions are judged by 

collision resistance, pre-image hardness, and diffusion 
properties. Password storage subsystems employ salted 
and cost-amplified hashes such as bcrypt and Argon2 
to withstand offline cracking. Message digests (SHA-
256, SHA-3) secure software distribution, API 
signature validation, TLS negotiations, and audit logs. 
Blockchains append cryptographic hashes to enforce 
immutability of ledger states across untrusted nodes [1] 
[2]. 

 
B. Multimedia and Forensics 
       Robust and geometric hashing support content 
tracing under non-malicious distortions such as 
resizing, compression, cropping, or illumination 
differences. These techniques allow near-duplicate 
detection, copyright enforcement, broadcast 
monitoring, and tamper triage in forensic pipelines. In 
practice, services like YouTube content ID, Meta’s 
image-matching pipelines, and stock-media registries 
employ perceptual hashes derived from DCT, SVD, or 
invariant feature transforms to flag reused or 
manipulated media at scale [2]. 
 
C. Networking and Distributed Systems 
        Hashing underpins routing, packet classification, 
and key distribution in distributed and software-
defined networks. Dynamic hashing, Bloom filters, and 
robust hashing enable fast updates to SDN flow tables 
where rules change frequently, and latency budgets are 
strict. Scalable data stores and key–value systems such 
as Cassandra, HBase, and Dynamo-style architectures 
rely on consistent or dynamic hashing to distribute keys 
evenly and avoid global rebalancing as nodes join or 
leave. Bloom filters minimize lookup cost and suppress 
redundant traffic in web caching, large-scale databases, 
P2P overlays, and WAN optimization appliances, 
while robust hashing supports content-based routing 
and multimedia identification even after compression 
or transformation. Emerging AI-driven networks 
further adopt deep hashing to index high-dimensional 
telemetry or sensor feeds, allowing similarity search at 
line rate without inflating memory or CPU cost [4] [5]. 
 
D. Web Systems and Search Infrastructures 
        In web systems, hashing enables fast indexing, 
duplicate detection, and load-balanced caching. Bloom 
filters are widely deployed to compress membership 
sets in collaborative web caches, where each cache 
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broadcasts only hashed summaries instead of full URL 
lists. In free-text and document search, Bloom filters 
support rapid term existence checks, reducing I/O in 
large, inverted indexes. Web-scale clustering of pages 
similarly uses resemblance hashing to detect near-
duplicate documents in crawl pipelines [2] [4]. 
 
E. Approximate Nearest Neighbour Retrieval 
       Approximate nearest neighbour retrieval relies on 
hashing methods that compress high-dimensional 
embeddings into compact binary codes while 
preserving similarity structure. Deep hashing enables 
sub-linear search over billion-scale corpora, making 
them integral to vision retrieval, face recognition, 
recommender systems, and cross-modal alignment. 
Large-scale platforms such as Facebook’sFAISS and 
Google’s internal retrieval stacks use learned hash 
codes to perform fast embedding lookups with minimal 
loss of semantic accuracy. Similar techniques drive e-
commerce ranking engines, where strict latency 
budgets require rapid candidate generation before full-
precision re-scoring [5]. 
 

4. SUMMARY AND CONCLUSION 
    

Hashing has evolved from a constant-time 
lookup tool into a versatile set of algorithms serving 
diverse computational needs. Traditional and dynamic 
hashing continue to form the foundation of storage 
engines and transactional systems by ensuring 
predictable access and scalability. Cryptographic 
hashing emphasizes irreversibility and collision 
resistance, providing the backbone for authentication, 
integrity verification, and tamper-evident ledgers. 
Geometric and robust hashing extend these ideas to 
perceptual domains, enabling resilience to 
transformations such as rotation, scaling, and 
compression—key to multimedia tracing and large-
scale content identification. Probabilistic approaches, 
particularly Bloom filters, trade exactness for memory 
and bandwidth efficiency in distributed and caching 
systems. Finally, deep hashing introduces learning-
based embeddings that preserve semantic similarity for 
large-scale retrieval across visual and multimodal data. 
Each hashing family addresses a distinct objective—
speed, security, invariance, efficiency, or semantic 
retrieval—and no single method dominates across all 
domains. The growing trend is toward hybrid 

approaches that merge these strengths, combining 
cryptographic assurance with similarity awareness and 
probabilistic efficiency. Hashing thus remains a 
compact, computation-light abstraction central to 
scalable data systems, secure infrastructures, and AI-
driven environments. 
 
Table 1:  Hashing Algorithms and Their Suitable 

Applications 

Application 
Domain 

Most Suitable 
Hashing 
Algorithms 

Justification 

Databases 
& storage 

Classical / 
Dynamic 
hashing: 
maps keys to 
buckets with 
constant-time 
access, with 
dynamic 
variants 
allowing 
table growth 
without full 
rehashing. 

Lookup latency and 
mutation tolerance 
dominate over 
security or 
perceptual 
invariance. 
Guarantees 
O(1)average access; 
extendible/linear 
hashing avoid global 
rebuilds. 

Security & 
integrity 

Cryptographi
c hashing 
(SHA-2/3, 
bcrypt, 
Argon2): 
produces 
one-way 
collision-
resistant 
digests for 
trust and 
authenticatio
n. 

The domain is 
adversarial; integrity 
and non-invertibility 
are mandatory. 
Salted / slow hashes 
mitigate brute-force; 
tamper evident logs 
and signatures. 

Multimedia 
& forensics 

Robust / 
geometric 
hashing 
generates 
similarity-
preserving 
signatures 
stable under 
scaling, 
cropping, 
compression 
or noise. 

Must detect near-
duplicates and 
tampering even after 
benign 
transformations. 
Used in ContentID, 
watermarking, 
forensic pipelines; 
built on 
DCT/SVD/invariant
s. 

Networking 
& 
distributed 
systems 

Dynamic 
hashing & 
Bloom filters: 
scalable 
placement 
and 
probabilistic 
membership 

State must fit in 
constrained routers 
and adapt to churn 
with minimal delay. 
Enables consistent 
key spread; BF 
suppresses negatives 
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for routing, 
DHTs and 
SDN tables. 

without storing 
keys. 

Web 
systems & 
caching 

Bloom filters 
+ classical 
maps: fast 
membership 
tests and 
URL/CDN 
indexing with 
minimal 
memory 
footprint. 

Prevents costly 
cache/disk lookups 
and reduces 
crawler/network 
load at scale. Used 
in Redis, 
Memcached, CDN 
front-end, search 
indexing stacks. 

Approximat
e NN / 
retrieval 

LSH / Deep 
hashing: 
projects high-
dimensional 
features to 
binary codes 
that preserve 
semantic 
closeness in 
Hamming 
space. 

Enables sublinear 
nearest-neighbour 
search over billion-
scale corpora. 
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