
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

9

Manuscript received November 5, 2025
Manuscript revised November 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.11.2

 Comprehensive Survey Of Hashing Algorithms And Their
Applications

Saeed M.Aldossari
Computer Science
Department
Prince Sattam bin Abdulaziz
University
Al-Kharj, Saudi Arabia
447540161@std.psau.edu.sa

Abdullah A. Sabr
Computer Science
Department
Prince Sattam bin Abdulaziz
University
Al-Kharj, Saudi Arabia
447540135@std.psau.edu.sa

Abdullah H. Almutairi
Computer Science
Department
Prince Sattam bin Abdulaziz
University
Al-Kharj, Saudi Arabia
447540061@std.psau.edu.sa

Mohamed O. Hegazi
Computer Science
Department
Prince Sattam bin Abdulaziz
University
Al-Kharj, Saudi Arabia
m.hegazi@psau.edu.sa

Abstract
Hashing has progressed from a simple constant-time lookup
mechanism to a diverse set of algorithmic paradigms that
underpin efficiency, security, and large-scale data
management in modern computing. This survey organizes
existing approaches into six principal categories: division-
based hashing, dynamic hashing, cryptographic hashing,
geometric and robust hashing, Bloom filter methods, and
deep hashing. For each category, the paper outlines the key
design principles, operational objectives, and characteristic
performance trade-offs. The discussion connects these
families of algorithms to their main application areas,
including authentication, multimedia forensics, distributed
storage, web systems, and approximate nearest-neighbour
retrieval. Through comparative analysis, the survey
emphasizes that the choice of hashing strategy is inherently
context-dependent, shaped by constraints such as collision
tolerance, memory efficiency, and semantic accuracy.
Distinct from earlier reviews, this work brings together
conventional and learning-based hashing techniques within a
single analytical framework, highlighting the emergence of
hybrid models that balance scalability, security, and
similarity preservation in AI-driven and resource-limited
environments.

Keywords:
Hashing algorithms, dynamic hashing, cryptographic
hashing, Bloom filters, deep hashing, robust hashing.

1. INTRODUCTION

Hashing in general is a mechanism that
converts variant size string into a fixed size string using
a hash function. It is a fundamental operation that maps
input objects from a large or unbounded domain to a
limited address space through a deterministic
transformation known as a hash function [1] [2].

Figure 1 Hash function takes input and converts it to

fixed-size string

It has been extensively adopted in performance-
critical data processing pipelines due to its constant-
time average-case lookup behavior and its ability to
eliminate the need for ordered data structures or
auxiliary indexing layers [3]. Beyond lookup
acceleration, hashing also supports integrity
verification, identity authentication, cache
coordination, and content-based detection, thereby
rendering it a multi-domain building block in data
systems, communication networks, and security
infrastructures [2] [4].

Historically, hashing techniques were
conceived for static file organizations and compiler
symbol tables. Subsequent developments introduced
dynamic hashing to address scalability and collision
growth in mutable datasets [3]. In parallel,
cryptographic hash functions emerged as one-way
constructs for password storage, message
authentication, and digital signatures, where collision
resistance and pre-image hardness rather than access
latency are the primary objectives. In multimedia and
computer vision, geometric and robust hashing
methods have been devised to preserve similarity under
transformations such as rotation, scaling, compression,
or noise while still discriminating between dissimilar
content [2] [1]. Probabilistic hashing, exemplified by
Bloom filters, enables memory-efficient set
membership tests at scale in distributed environments

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

10

[2]. More recently, the proliferation of high-
dimensional data retrieval has motivated deep hashing,
wherein neural networks optimize binary embeddings
to preserve semantic proximity in the Hamming space
[2].

2. HASHING ALGORITHMS
A. The Division Method

The division method is a hashing technique
where a key x is mapped to a hash table index using the
formula:

H(x) = x mod m (1)
If the table index starts at 1 instead of 0, the formula
becomes:
 H(x) = x mod m + 1. (2)
The value of m must be chosen carefully, often as a
prime number, to help distribute keys evenly and
reduce collisions, especially when keys follow patterns.
For example, if m = 10 and the key is 123456, the result
is 6, meaning the key is stored at index 6. If m = 13 and
the key is 987654, the result is 5, so the key is stored at
index 5. However, this method can still cause clustering
when many keys share similar structures (e.g., ending
in the same digit), and performance may decline if keys
are not well distributed [2].

B. Dynamic Hashing

Dynamic hashing is a set of techniques that let
hash tables grow or shrink as data changes, overcoming
the fixed-size limits of static hashing and maintaining
fast lookup, insertion, and deletion. Approaches such
as extendible hashing, linear hashing, and cuckoo
hashing minimize collisions and avoid expensive full
rehashing, keeping performance stable as key
populations evolve. These methods are widely used in
transactional databases, file systems, distributed
networks, routing tables, and security systems where
balanced data distribution and real-time responsiveness
are essential. Their adaptability also makes them
suitable for SDN (Software-Defined Networking)
environments, were traffic patterns and data volume
shift frequently. Current challenges include optimizing
memory use, strengthening fault tolerance and security,
and developing energy-efficient variants to meet the
scalability demands of emerging domains such as IoT
and AI [2] [3].

 A typical example is extendible hashing, which
stores keys in buckets referenced by a directory
indexed by the low order bits of the hash value.
Suppose the directory depth begins at 𝑑 = 1, giving
two buckets, 0 and 1. Inserting key 𝐾ଵ (bits 00) places
it in bucket 0. Inserting 𝐾ଵ (bits 01) maps to the same
bucket, causing overflow. Instead of rebuilding the
table, only this bucket is split: its local depth becomes
2, the directory doubles to four entries (00, 01, 10, 11),
and the affected keys are rehashed so that 𝐾ଵ → 00 and
𝐾ଶ → 01. Inserting a third key 𝐾ଷ with bits 10 then
maps directly to bucket 10 without further restructuring.
This illustrates the core property of extendible hashing:
only the overflowing bucket grows, preventing global
rehashing and allowing incremental expansion [2].

C. Cryptographic Hashing

Cryptographic hashing is a one-way process
that converts any input into a fixed-size digest used for
security purposes such as password storage, digital
signatures, and data integrity. Unlike dynamic hashing,
which resizes tables for performance, cryptographic
hashes focus on being irreversible and collision
resistant. Algorithms like MD5, SHA-1, SHA-2, and
SHA-3 take a message of any length and generate a
unique output. For example:

 SHA-1("Hello") =
“f7ff9e8b7bb2e09b70935a5d785e0cc5d9d0abf0”

Even changing one letter produces a completely
different hash, proving the avalanche effect [1] [2].

D. Geometric and Robust Hashing
 Geometric hashing is mainly used in computer
vision and computational geometry to match shapes or
features even when objects are rotated, scaled, partially
hidden, or noisy. Its key strength is efficiency, making
it suitable for tasks like pattern recognition, 3D object
matching, and protein structure alignment. It enables
partial recognition by storing geometric relationships
rather than raw data. Robust hashing, on the other hand,
focuses on generating compact signatures that survive
acceptable changes to the content. Instead of matching
exact data, it preserves the “essence” of audio or
images, allowing identification even after compression,
resizing, or filtering. Robust audio hashing powers
services like Shazam, while robust image hashing is

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

11

used in watermarking, fake-image detection, and
copyright protection. Unlike cryptographic hashes,
robust hashes remain similar when the content is
slightly modified, making them ideal for multimedia
authentication and retrieval [2].
 A typical example is the classic geometric hashing
pipeline. A model object is first represented by feature
points. A pair of non-collinear points (𝑝௜ , 𝑝௝) is chosen

as a basis, and all other points are transformed into this
basis to produce invariant hash keys. These keys are
inserted into a hash table. Later, when a query image is
processed, the same basis-selection and hashing step is
repeated. If many of the resulting keys vote for the
same model object, the system declares a match—even
if the object is scaled, rotated, or partially occluded.
This ability to match transformed or incomplete data is
what makes geometric hashing valuable in computer
vision and bio-structure alignment [6]. On other hand,
robust hashing, focuses on multimedia signals. Instead
of hashing exact bytes, it produces a short signature that
remains stable after acceptable modifications such as
compression, resizing, or filtering. This allows systems
to recognize the same content even when it is not bit-
identical. For example, matching a recompressed
image or a low-quality audio snippet. Robust audio
hashing powers apps like Shazam, while robust image
hashing is widely used in copyright tracking and fake-
image detection. Unlike cryptographic hashes, robust
hashes are designed to stay similar when the content is
slightly modified, which makes them suitable for
authentication and large-scale media search [7].

E. Bloom Filter Hashing
 Bloom filters are space-efficient probabilistic data
structures that enable constant-time membership
queries while avoiding the storage cost of the full
dataset. An item is processed by multiple independent
hash functions, each of which maps it to a bit position
in a fixed-size array. These positions are set to 1, and
future lookups check the same positions to determine
whether an element is possibly present or absent. The
only source of error is the presence of false positives,
whereas false negatives never occur; if a Bloom filter
reports that an item is not stored, the result is
guaranteed correct. [2] This behavior makes Bloom
filters well suited for systems where memory efficiency
and lookup speed are more important than perfect
accuracy. To illustrate the mechanism, consider a bit

array of length 𝑚 =12, initialized to zero, and 𝑘 =3 hash
functions. Inserting two elements fills several bit
positions, and although distinct items may set
overlapping bits, the structure remains compact in
constant time. When a third element is queried, the
filter returnsdefinitely absent if any of the
corresponding bit positions contain zero, and possibly
present if all are set to one. The probability of a false
positive after inserting 𝑛 elements is commonly
approximated by:

 p ≈ ൬1 − eି
ౡ౤

ౣ ൰
୩

 (3)

Demonstrating that the error rate can be tuned

by adjusting the number of hash functions and the bit-
array size. Bloom filters are widely deployed in large-
scale systems, including web caches that advertise
stored URLs without transferring full lists, distributed
databases such as Cassandra and HBase that avoid
unnecessary disk reads, and networked systems that
reduce message overhead in membership protocols.
They are also used in spam detection, blockchain
networks, and content delivery architectures where
bandwidth and memory constraints are critical.
Although classical Bloom filters remain dominant,
more recent variants, such as Xor Filters and Binary
Fuse Filters, improve memory usage and query
throughput while maintaining the same probabilistic
membership model [8][9].

F. Deep Hashing
 Deep hashing is a learning-based hashing
approach that uses deep neural networks to generate
compact binary codes while preserving semantic
similarity between data items. Unlike traditional
hashing, which relies on hand-crafted features, deep
hashing learns both the feature representation and the
hash function jointly, allowing the model to optimise
feature extraction and hash generation in a single end-
to-end process. This makes it highly effective for large-
scale similarity search, especially in domains where
visual or semantic relationships cannot be captured by
manually designed features [5]. A typical deep hashing
system is trained on labelled or pairwise-related data so
that samples belonging to the same class (e.g., two
images of the same person) are mapped to nearby
binary codes, while unrelated samples are pushed
farther apart in Hamming space. After training, an

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

12

image may be converted into a 64-bit code such as: bଵ

= (1011010010111001 …) and a visually similar
image may produce: 𝑏ଶ = (1011010010111101 …)
differing by only a few bits. Because retrieval is
performed using Hamming-distance lookup rather than
high-dimensional floating-point comparison, the
system can search millions of stored items in real time
using only lightweight bit operations. This gives deep
hashing a strong advantage in large-scale image
retrieval, video deduplication, face recognition, cross-
modal search (e.g., text–image matching), and
recommendation engines where low latency and
memory efficiency are essential
 Compared with traditional hashing and
conventional deep feature indexing, deep hashing
offers three main benefits: First, it compresses high-
dimensional features into short binary codes, reducing
storage requirements. Second, it enables millisecond
lookup time over massive datasets through Hamming
search. Third, it scales gracefully as the size of the
database grows, since code length remains fixed even
when the number of samples increases. These
properties have made deep hashing a key component in
modern computer vision pipelines, multimedia
databases, and AI-driven content retrieval systems [5].

3. APPLICATIONS OF HASHING
ALGORITHMS

 Hashing techniques are deployed across a wide
spectrum of computing domains due to their ability to
provide constant-time lookup, compact representation,
tamper detection, and similarity preservation under
varying constraints [3]. The choice of hashing method
is dictated by operational objectives: classical and
dynamic schemes priorities access latency and
scalability; cryptographic hashing enforces integrity
and trust; robust hashing preserves perceptual structure
in multimedia pipelines; Bloom filters optimize
probabilistic membership under memory constraints;
and deep hashing enables efficient large-scale retrieval
in high-dimensional semantic spaces. The following
subsections survey the dominant application contexts
aligned with these distinct hashing families.

A. Security and Integrity

Cryptographic hashing is central to authentication,
integrity assurance, and non-repudiation. Unlike
classical hashing, these functions are judged by

collision resistance, pre-image hardness, and diffusion
properties. Password storage subsystems employ salted
and cost-amplified hashes such as bcrypt and Argon2
to withstand offline cracking. Message digests (SHA-
256, SHA-3) secure software distribution, API
signature validation, TLS negotiations, and audit logs.
Blockchains append cryptographic hashes to enforce
immutability of ledger states across untrusted nodes [1]
[2].

B. Multimedia and Forensics
 Robust and geometric hashing support content
tracing under non-malicious distortions such as
resizing, compression, cropping, or illumination
differences. These techniques allow near-duplicate
detection, copyright enforcement, broadcast
monitoring, and tamper triage in forensic pipelines. In
practice, services like YouTube content ID, Meta’s
image-matching pipelines, and stock-media registries
employ perceptual hashes derived from DCT, SVD, or
invariant feature transforms to flag reused or
manipulated media at scale [2].

C. Networking and Distributed Systems
 Hashing underpins routing, packet classification,
and key distribution in distributed and software-
defined networks. Dynamic hashing, Bloom filters, and
robust hashing enable fast updates to SDN flow tables
where rules change frequently, and latency budgets are
strict. Scalable data stores and key–value systems such
as Cassandra, HBase, and Dynamo-style architectures
rely on consistent or dynamic hashing to distribute keys
evenly and avoid global rebalancing as nodes join or
leave. Bloom filters minimize lookup cost and suppress
redundant traffic in web caching, large-scale databases,
P2P overlays, and WAN optimization appliances,
while robust hashing supports content-based routing
and multimedia identification even after compression
or transformation. Emerging AI-driven networks
further adopt deep hashing to index high-dimensional
telemetry or sensor feeds, allowing similarity search at
line rate without inflating memory or CPU cost [4] [5].

D. Web Systems and Search Infrastructures
 In web systems, hashing enables fast indexing,
duplicate detection, and load-balanced caching. Bloom
filters are widely deployed to compress membership
sets in collaborative web caches, where each cache

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

13

broadcasts only hashed summaries instead of full URL
lists. In free-text and document search, Bloom filters
support rapid term existence checks, reducing I/O in
large, inverted indexes. Web-scale clustering of pages
similarly uses resemblance hashing to detect near-
duplicate documents in crawl pipelines [2] [4].

E. Approximate Nearest Neighbour Retrieval
 Approximate nearest neighbour retrieval relies on
hashing methods that compress high-dimensional
embeddings into compact binary codes while
preserving similarity structure. Deep hashing enables
sub-linear search over billion-scale corpora, making
them integral to vision retrieval, face recognition,
recommender systems, and cross-modal alignment.
Large-scale platforms such as Facebook’sFAISS and
Google’s internal retrieval stacks use learned hash
codes to perform fast embedding lookups with minimal
loss of semantic accuracy. Similar techniques drive e-
commerce ranking engines, where strict latency
budgets require rapid candidate generation before full-
precision re-scoring [5].

4. SUMMARY AND CONCLUSION

Hashing has evolved from a constant-time
lookup tool into a versatile set of algorithms serving
diverse computational needs. Traditional and dynamic
hashing continue to form the foundation of storage
engines and transactional systems by ensuring
predictable access and scalability. Cryptographic
hashing emphasizes irreversibility and collision
resistance, providing the backbone for authentication,
integrity verification, and tamper-evident ledgers.
Geometric and robust hashing extend these ideas to
perceptual domains, enabling resilience to
transformations such as rotation, scaling, and
compression—key to multimedia tracing and large-
scale content identification. Probabilistic approaches,
particularly Bloom filters, trade exactness for memory
and bandwidth efficiency in distributed and caching
systems. Finally, deep hashing introduces learning-
based embeddings that preserve semantic similarity for
large-scale retrieval across visual and multimodal data.
Each hashing family addresses a distinct objective—
speed, security, invariance, efficiency, or semantic
retrieval—and no single method dominates across all
domains. The growing trend is toward hybrid

approaches that merge these strengths, combining
cryptographic assurance with similarity awareness and
probabilistic efficiency. Hashing thus remains a
compact, computation-light abstraction central to
scalable data systems, secure infrastructures, and AI-
driven environments.

Table 1: Hashing Algorithms and Their Suitable

Applications

Application
Domain

Most Suitable
Hashing
Algorithms

Justification

Databases
& storage

Classical /
Dynamic
hashing:
maps keys to
buckets with
constant-time
access, with
dynamic
variants
allowing
table growth
without full
rehashing.

Lookup latency and
mutation tolerance
dominate over
security or
perceptual
invariance.
Guarantees
O(1)average access;
extendible/linear
hashing avoid global
rebuilds.

Security &
integrity

Cryptographi
c hashing
(SHA-2/3,
bcrypt,
Argon2):
produces
one-way
collision-
resistant
digests for
trust and
authenticatio
n.

The domain is
adversarial; integrity
and non-invertibility
are mandatory.
Salted / slow hashes
mitigate brute-force;
tamper evident logs
and signatures.

Multimedia
& forensics

Robust /
geometric
hashing
generates
similarity-
preserving
signatures
stable under
scaling,
cropping,
compression
or noise.

Must detect near-
duplicates and
tampering even after
benign
transformations.
Used in ContentID,
watermarking,
forensic pipelines;
built on
DCT/SVD/invariant
s.

Networking
&
distributed
systems

Dynamic
hashing &
Bloom filters:
scalable
placement
and
probabilistic
membership

State must fit in
constrained routers
and adapt to churn
with minimal delay.
Enables consistent
key spread; BF
suppresses negatives

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

14

for routing,
DHTs and
SDN tables.

without storing
keys.

Web
systems &
caching

Bloom filters
+ classical
maps: fast
membership
tests and
URL/CDN
indexing with
minimal
memory
footprint.

Prevents costly
cache/disk lookups
and reduces
crawler/network
load at scale. Used
in Redis,
Memcached, CDN
front-end, search
indexing stacks.

Approximat
e NN /
retrieval

LSH / Deep
hashing:
projects high-
dimensional
features to
binary codes
that preserve
semantic
closeness in
Hamming
space.

Enables sublinear
nearest-neighbour
search over billion-
scale corpora.

REFERENCES
[1]Kale, A. M., & Dhamdhere, S. (2018). Survey paper on

different type of hashing algorithm. International
Journal of Advance Scientific Research
Algorithm, 3(2).

[2] Singh, M., & Garg, D. (2009, March). Choosing best
hashing strategies and hash functions. In 2009 IEEE
International Advance Computing Conference (pp.
50-55). IEEE.

[3] Lafta, N. A., & Al-fiskhaltom, F. R. F. (2023). A
Comprehensive Survey of Dynamic Hashing
Techniques in Network Data
Processing. Babylonian Journal of
Networking, 2023, 89-93.

[4] Patra, S. P., & Rani, M. (2025). Evaluation and
Categorization of Hashing Algorithms Based on
Their Applications. IAENG International Journal of
Applied Mathematics, 55(3).

[5] Luo, X., Wang, H., Wu, D., Chen, C., Deng, M., Huang,
J., & Hua, X. S. (2023). A survey on deep hashing
methods. ACM Transactions on Knowledge
Discovery from Data, 17(1), 1-50.

[6] M. Coluzzi, A. Brocco, and T. Leidi, “A survey and fair
comparison of consistent hashing”, in CEUR
Workshop Proceedings, vol. 3478, 2023.

[7] L. Du, A. T. S. Ho, and R. Cong, “Perceptual hashing
for image authentication: A survey”, Signal
Processing: Image Communication, vol. 81, p.
115713, Feb. 2020.

[8] T. Graf and D. Lemire, “Xor filters: Faster and smaller
than Bloom and Cuckoo filters”, ACM Journal of
Experimental Algorithmics, vol. 27, pp. 1–16, 2022.

[9] T. Graf and D. Lemire, “Binary Fuse Filters: Fast and
smaller than Xor Filters”, ACM Journal of
Experimental Algorithmics, vol. 27, pp. 1–17, 2022.

