
IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

29

Manuscript received November 5, 2025
Manuscript revised November 20, 2025
https://doi.org/10.22937/IJCSNS.2025.25.11.4

Multi-Agent Battlefield Game with Federated Reinforcement Learning

Fardeen Hasib Mozumder1†

Department of Electrical and Electronic Engineering, Islamic University of Technology, Gazipur, Bangladesh

Abstract
This paper discusses the efficacy of federated learning in solving
the Battlefield game from the petting zoo simulator for unseen and
new environments utilizing multi-agent reinforcement learning.
The game simulates a 12v12 battle in an open field with walls of
different landscapes. The work incorporated federated learning
by forming a global model by averaging the parameters of a
few models trained locally on different landscapes utilizing a
suitable reinforcement learning algorithm. In the simulation, the
performance of the global model relative to local models within
a new environment has been evaluated to assess the advantages
of federated learning in these settings. The experimental results
demonstrated that the global model consistently outperformed
local models trained in a non-federated manner, thereby validating
the effectiveness of federated learning in such environments.
Keywords:
Reinforcement Learning, Federated Learning, Battlefield, Multi-
Agent Learning.

1. Introduction

Reinforcement Learning (RL) is a widely

researched area within Machine Learning and
Artificial Intelligence. In RL, the objective of the
agent is to maximize its reward by learning effective
ways to engage with its environment. This learning
process typically occurs through trial and error, as the
agent discovers how to associate each state s with the
most advantageous actions a in order to attain long-
term rewards. This line of research has found many
applications, from robotics and autonomous vehicles
to solving classic Atari games. In recent years,
researchers have been trying to determine if it is
possible to train RL algorithms to play these games
and perform better than humans. Unlike RL agents,
human players are able to grasp the basics of Atari
games and perform reasonably well within just a few
minutes [1]. Atari games became a popular benchmark
for RL research following the release of the Arcade
Learning Environment (ALE) in 2012 [2]. The
integration of reinforcement learning techniques with
deep neural networks allowed RL algorithms to learn
to play Atari games directly from game screen images,
utilizing variants of the Deep Q Networks (DQN)

algorithm [3], [4], Proximal Policy Optimization (PPO)
[5] as well as Actor-Critic methods [6]–[8]. In this
project, reinforcement learning has been used to play
the game Battlefield. This is a competitive multi-agent
12v12 game in an open field with different landscapes,
where each agent tries to maximize its reward by
eliminating the players of the other team. However,
the agents trained in a certain landscape perform
poorly, i.e., unable to eliminate players from the other
team efficiently, in unseen landscapes or
environments. In this work, the efficacy of federated
learning has been studied in such environments.
Multiple battlefield games are played in different
environments simultaneously by training the local
agents with a suitable Deep RL algorithm. Federated
Learning [9], [10] has been utilized to combine the
models resulting from training the agents in their local
environments and create a global model by
aggregating the parameters of the local models at the
end of each training round. The obtained global model
is then shared among all local models to be used as an
initialization for the next training round until each of
the local models converges. The workflow of the work
can be summarized as follows:

a) Several RL algorithms such as Deep Q-Learning

with Neural Networks (DQN), advanced Actor-
Critic (A2C), and Proximal Policy Optimization
(PPO) have been tried to train the agents and
compare their performances to find the best
algorithm suitable for the game’s setting.

b) Four environments with different wall shapes have

been created using environment wrappers of the
PettingZoo simulator. Three of these environments
were used to train the federated global model and
one to test it.

c) Federated learning has been implemented by
aggregating the local models resulting from training
the agents in the environments allocated for the
training purpose using the suitable RL algorithms to
form a global model.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

30

d) The performance of the global model and the local

models has been compared in the unseen test
environment to demonstrate the efficacy of
federated learning in such environments.

(a) Battlefield

environment

(b) Agent environment cycle

Fig. 1. Battlefield environment with 12 red agents vs 12 blue
agents, and the agent-environment cycle.

The following sections introduce the key

concepts used in the work. For example, Section II
introduces the agents, environments, and the simulator
used in the project. Section III explains how to create
and split new environments for training and testing.
Section IV presents three different algorithms used to
solve the game and compares their implementations.
The usage of federated learning is explained in Section
V. The results and findings of our simulations are
presented in Sections VI and VII, where different
approaches are investigated to improve the
performance of each implementation. Finally, Section
VIII concludes the paper and provides potential future
research based on the findings of the project.

2. Agent and Environment

A. Environment

For this project, each environment is created
and simulated using PettingZoo. PettingZoo is a
Python library for conducting research in multi-agent
reinforcement learning, akin to a multi-agent version
of Gym [11]. PettingZoo includes several families of
environments to test reinforcement learning
algorithms and allows us to use third-party
environments through wrappers. Magent is one of the
families of environments included in PettingZoo,
created by Zheng et al. [12]. Magent includes
Battlefield, which is what was used for this project.
Battlefield is a two-team battle game where each agent
has to find out the best way to maximize their own
reward while maximizing their team’s success.

Meanwhile, the agents have to maneuver around pre-
defined obstacles in a medium-sized map, as seen in
Fig. 1.

B. Agent

Agents are rewarded based solely on their
individual performance, without consideration for the
performance of their teammates or opponents, which
complicates the implementation of team cooperation.
Since agents regenerate health slowly, a strategy that
prioritizes rapid elimination of enemies is favored
over a slower, tactical approach. The environment
includes two teams, each consisting of 12 units. Units
take turns sequentially, starting with unit 0 to 11 from
the red team, followed by unit 0 to 11 from the blue
team, as illustrated in Fig. 1(b). Every unit has 10 HP
and recovers 0.1 HP per turn. Each attack inflicts 2 HP
of damage on enemies, and attacks on teammates are
ignored. As in all Magent environments, agents can
either move or attack during their turn, but not both.
Positive rewards include 5 points for eliminating an
enemy and 0.2 points for attacking an opponent, while
penalties consist of -0.005 points per turn, -1 for
attacking, and -0.1 for dying.

C. Action and State Space

In terms of the action space available for each
agent, the space is discrete and has 12 possible move
actions plus eight attack actions. The action space is
shown in Fig. 2. The state space is an 80x80 matrix,
the same size as the map, containing 0/1 for blue and
red team presence and HP and the obstacle present,
thus giving the location and health of each agent and
obstacles’ locations. HP values are normalized (0-1
range). The observation state is an array of shape (n
agents, view width, view height, n channel) for all
agents. HP is the normalized health point (range 0-1).
The channels are team blue HP and presence, team red
HP and presence, and Minimap is used to give a fuzzy
global observation to the agents.

Fig. 2. Battlefield environment parameters, its observation space

and action space.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

31

3. Simulation Setup

Each local model was trained on environments
with slightly different wall setups, and the final testing
was done on an unseen environment. In Fig. 3, the
different wall setups used are shown. The wall setups
used for training and testing was randomized to reduce
the potential bias of intentionally choosing a particular
wall setup for testing. In particular, for the
environments used in this project that did have walls,
pnorm unit circles have been drawn from the centers
of the displays. The diamond wall setup is the L1-
norm unit circle, the circle wall setup is the L2-norm
unit circle, and the L3 wall (rounded, but squarish with
softer corners) setup is the L3-norm unit circle. These
were chosen because each wall setup offers slightly
different properties and takes up different amounts of
area. Additionally, the code for each environment only
had to be minimally changed.

(a) No wall

(b) Circle Wall

c) L3-Norm Unit Circle Wall

(d) Diamond Wall

Fig. 3. Different wall setups used in training and testing. Wall

setups (a) - (c) were used in training and wall setup (d) was used
for testing the final federated model.

4. Implemented Approaches for Solving the

Game

A. Deep Q-Learning with Neural Networks

The Deep Q-Network (DQN) algorithm
integrates a nonlinear function approximation method
called Deep Neural Network (DNN) with the Q-
learning algorithm [3]. This approach employs a
multi-layered neural network that generates a vector

of action values for each input state. Key components
of this algorithm include the use of a target network
and an experience replay buffer. DQNs have
demonstrated the ability to reach human-level
performance across various Atari games [13]. These
algorithms are remarkably flexible and stable,
showing state-of-the-art performance, and have seen
many extensions. To address the overestimation bias
of Q-learning, Double DQN (DDQN) was proposed,
which decouples selection and evaluation of the
bootstrap action [14]. The authors in [3] used the last
four frames as input of their DQN, which allowed the
model to access more information than just the current
observation. To help the agent remember older
information, the authors in [15] modified the DQN
architecture by adding a recurrent layer between and
introducing Deep Q-Learning with Recurrent Neural
Networks(DQRN). In this project, DQN based on
Neural Fitted Q Iteration was used to solve the
multiagent battlefield game. The DQN in the project
also includes a replay buffer, target network, and
gradient clipping technique for stability and avoiding
large updates during the training phase.

B. Actor – Critic

Actor-Critic is a popular RL algorithm that
combines policy-based and value-based approaches. It
consists of two key components: the actor, which is
responsible for selecting actions based on a policy, and
the critic, which evaluates the actions by estimating
the value function. In this architecture, the actor
updates the policy parameters to achieve maximum
rewards. the critic provides feedback on the actions the
actor took by estimating the TD error, where TD is.
By doing so, the critic reduces the policy gradients’
variances and maintains the training process’s stability.
As this method learns both the value and policy
functions concurrently, it converges faster and thus
proves to be highly efficient. Variants of the actor-
critic algorithm, such as Synchronous Advantage
Actor-Critic (A2C) and Asynchronous Advantage
Actor-Critic (A3C) [6], have been widely used in deep
RL applications. In this project, the synchronous
advantage actor-critic (A2C) approach was utilized to
play the Magent Battlefield game with the trained
agents.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

32

t

C. Proximal Policy Optimization
Proximal Policy Optimization (PPO) is a

reinforcement learning algorithm designed to balance
efficiency and stability in policy updates. Unlike
traditional policy gradient methods, PPO restricts the
margin of the change in policy by utilizing a clipped
objective function. This function puts a limit on the
gradient of policy, i.e., the difference between the new
and old policy, to a specified range and so prevents
large fluctuations in action probabilities, The process
helps to stabilize the training process. PPO is an on-
policy algorithm as it updates the policy using the
trajectories of the current policy, thereby enhancing
sampling efficiency. PPO simplifies the TRPO [16]
while achieving similar performance but with less
computational overhead. Due to its robustness and
ease of implementation, PPO has become a preferred
algorithm for Deep RL tasks. PPO has demonstrated
state-of-the-art results in various domains, from games
to robotic control.

Fig. 4. Federated learning architecture and the client-server
model [17]. Each client is solving a Battlefield game with a

different environment and their model is being shared to update
the global model

5. Federated Learning

Federated learning is a distributed machine
learning approach where models are trained across
multiple devices, servers or environments without
transferring the data to a central server/environment
[18]. Separate models are trained on their own
server/environment and the model updates, like
gradients, are sent to a central environment, which is
aggregated to update a global model. This method is
useful when two or more parties want to

collaboratively build a model using their independent
datasets. The resulting model’s performance is often
comparable to that of a centrally trained model with
all the data combined. Federated learning can be
implemented in various architectures, such as peer-to-
peer or client-server models. In this project, a client-
server model [17] was considered where multiple
Battlefield games were played in different
environments. In this project, the agents in three
different environments were trained to form their local
models, and the FedAvg algorithm [9] was used to
create a global model by taking the average of the
parameters of the local models with a view to have
better generalization and enhanced performance in
new environments. Algorithm 1 illustrates the
implementation of the FedAvg.

Algorithm 1 Federated Averaging (FedAvg)

1: Input: Number of clients K, number of communication
 rounds T , learning rate η, local epochs E, batch size B
2: Server initializes: global model weights 𝑤଴
3: for each round t = 1, . . . , T do
4: Server selects a random subset of clients St ⊆

{1, 2, . . . , K}
5: for each client k ∈ St in parallel do
6: Client k downloads global model weights 𝑤௧
7: Client k updates local model by solving:
 𝑤௧

௞ ← 𝑤௧ − 𝜂∇ℓ௞(𝑤௧; D௞)
 using local data Dk for E epochs with batch size B
8: end for
9: Server aggregates local models:

𝑤௧ାଵ ←
1

|𝑆௧|
෍ 𝑤௧

௞

௞ఢௌ೟

10. end for
11: Output: Final global model weights 𝑤்

6. Implementing RL Policies for Local

Games: Algorithm Selection

First, we aim to find the most suitable RL
algorithm for the Magent battlefield gam setting. DQN,
A2C, and PPO methods were tried and PPO was found
to yield the most rewards among the approaches.
Hence, the PPO was chosen to incorporate into the
project to train the local models. After each round of
training the local models in three different
environments, the FedAvg was used to get a global
model of which parameters were utilized as the initial

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

33

parameters for the local models for the following
round. The final global model was obtained after three
such rounds of training.

a) Local environments used for
training

(b) New diamond wall
environment

Fig. 5. Reward of the federated and vanilla (non-federated) PPO

algorithms.

7. Experimental Results

To test the performance of the federated
models and non-federated models, each of them was
evaluated in the local environments and a new
environment. Fig. 5 (a) shows that the non-federated
models give us higher rewards than the federated
models in their own environment and Fig. 5 (b) that
the federated model provides higher rewards in a new
and unseen environment. As the non-federated models
are trained on their local models in opposition to
federated models, which are trained by global
parameter sharing, non-federated models outperform
the federated model in their corresponding local
environments. On the other hand, the federated models
outperformed the non-federated models in a
completely new environment which was expected as
they were trained to enhance generalization. Fig. 6(a)
also shows that the red agents trained in a non-
federated manner were able to kill their oppositions
quickly in their local environment, but struggled to do
so in an unseen environment as shown in Fig. 6(b). On
the other hand, the red agents using the global model
were able to eliminate their opposition fast in the
unseen environment, as shown in Fig. 6(d), but failed
to achieve the same in one of the local environments,
as shown in Fig. 6(c). Hence, it was clear from the
experimental result that federated learning increases
the agents’ performance and yields higher rewards in
unseen environments, as it enhances generalization.

(a) Local environment with no

federation

(b) New environment with no
federation

(c) Local environment with

federation
(d) New environment with

federation

Fig. 6. The result of the Battlefield game. (a) In the setting with no
federation agents trained using non-federated model were able to kill
opponents faster in local environment. (b) Agents trained using non-
federated model were not able to kill opponents quickly in new
environment. (c) Agents trained using federated model were not able to kill
opponents quickly in local environment. (d) Agents trained using federated
model were able to kill opponents faster in new environment.

8. Conclusion and Future Work

The project shows that federated learning can

enhance the performance of reinforcement learning
algorithms within multi-agent systems when agents
interact with entirely new environments. However,
training and testing were limited to only a few
environments, which will be expanded in future work.
Additionally, to further investigate the efficacy of
federated learning, the project will be simulated with
algorithms beyond FedAvg to determine whether they
improve agents’ efficiency in gameplay. Future work
will also explore the effectiveness of the federated
learning and multi-agent learning combination in
diverse applications, such as robotics, healthcare, and
telecommunications, as any multi-agent problem
involving unpredictable environments stands to
benefit from the robustness that federated learning
offers.

References

[1] P. Tsividis, T. Pouncy, J. L. Xu, J. B. Tenenbaum, and S. J.
Gershman, “Human learning in atari. in 2017 aaai spring
symposia,” 2017.

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,
“The arcade learning environment: An evaluation platform
for general agents,” Journal of Artificial Intelligence
Research, vol. 47, pp. 253–279, 2013.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

34

with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 20

[4] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G.
Ostrovski, W. Dabney, D. Horgan, B. Piot, M. Azar, and D.
Silver, “Rainbow: Combining improvements in deep
reinforcement learning,” in Thirtysecond AAAI conference
on artificial intelligence, 2018.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

[6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T.
Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” in International
conference on machine learning. PMLR, 2016, pp. 1928–
1937.

[7] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz,
“Reinforcement learning through asynchronous advantage
actor-critic on a gpu,” arXiv preprint arXiv:1611.06256, 2016.

[8] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T.
Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning et al.,
“Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures,” in International
Conference on Machine Learning. PMLR, 2018, pp. 1407–
1416.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep
networks from decentralized data,” in Artificial intelligence
and statistics. PMLR, 2017, pp. 1273– 1282.

[10] J. Konecnˇ y, H. B. McMahan, D. Ramage, and P. Richt ` arik,
“Federated ´ optimization: Distributed machine learning for
on-device intelligence,” arXiv preprint arXiv:1610.02527,
2016.

[11] J. K. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari,
R. Sulivan, L. Santos, R. Perez, C. Horsch, C. Dieffendahl, N.
L. Williams, Y. Lokesh, R. Sullivan, and P. Ravi, “Pettingzoo:
Gym for multi-agent reinforcement learning,” arXiv preprint
arXiv:2009.14471, 2020.

[12] L. Zheng, J. Yang, H. Cai, M. Zhou, W. Zhang, J. Wang, and
Y. Yu, “Magent: A many-agent reinforcement learning
platform for artificial collective intelligence,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, 2018.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski et al., “Human-level control through deep
reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–
533, 2015.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double q-learning,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 30, no. 1, 2016.

[15] M. Hausknecht and P. Stone, “Deep recurrent q-learning for
partially observable mdps,” in 2015 aaai fall symposium
series, 2015.

[16] J. Schulman, “Trust region policy optimization,” arXiv
preprint arXiv:1502.05477, 2015.

[17] J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated
reinforcement learning: Techniques, applications, and open
challenges,” arXiv preprint arXiv:2108.11887, 2021.

[18] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu,
“Federated learning,” Synthesis Lectures on Artificial

Intelligence and Machine Learning, vol. 13, no. 3, pp. 1–207,
2019.

