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Abstract 
This paper discusses the efficacy of federated learning in solving 
the Battlefield game from the petting zoo simulator for unseen and 
new environments utilizing multi-agent reinforcement learning. 
The game simulates a 12v12 battle in an open field with walls of 
different landscapes. The work incorporated federated learning 
by forming a global model by averaging the parameters of a 
few models trained locally on different landscapes utilizing a 
suitable reinforcement learning algorithm. In the simulation, the 
performance of the global model relative to local models within 
a new environment has been evaluated to assess the advantages 
of federated learning in these settings. The experimental results 
demonstrated that the global model consistently outperformed 
local models trained in a non-federated manner, thereby validating 
the effectiveness of federated learning in such environments. 
Keywords: 
Reinforcement Learning, Federated Learning, Battlefield, Multi-
Agent Learning. 

 
1. Introduction 

 
Reinforcement Learning (RL) is a widely 

researched area within Machine Learning and 
Artificial Intelligence. In RL, the objective of the 
agent is to maximize its reward by learning effective 
ways to engage with its environment. This learning 
process typically occurs through trial and error, as the 
agent discovers how to associate each state s with the 
most advantageous actions a in order to attain long-
term rewards. This line of research has found many 
applications, from robotics and autonomous vehicles 
to solving classic Atari games. In recent years, 
researchers have been trying to determine if it is 
possible to train RL algorithms to play these games 
and perform better than humans. Unlike RL agents, 
human players are able to grasp the basics of Atari 
games and perform reasonably well within just a few 
minutes [1]. Atari games became a popular benchmark 
for RL research following the release of the Arcade 
Learning Environment (ALE) in 2012 [2]. The 
integration of reinforcement learning techniques with 
deep neural networks allowed RL algorithms to learn 
to play Atari games directly from game screen images, 
utilizing variants of the Deep Q Networks (DQN) 

algorithm [3], [4], Proximal Policy Optimization (PPO) 
[5] as well as Actor-Critic methods [6]–[8]. In this 
project, reinforcement learning has been used to play 
the game Battlefield. This is a competitive multi-agent 
12v12 game in an open field with different landscapes, 
where each agent tries to maximize its reward by 
eliminating the players of the other team. However, 
the agents trained in a certain landscape perform 
poorly, i.e., unable to eliminate players from the other 
team efficiently, in unseen landscapes or 
environments. In this work, the efficacy of federated 
learning has been studied in such environments. 
Multiple battlefield games are played in different 
environments simultaneously by training the local 
agents with a suitable Deep RL algorithm. Federated 
Learning [9], [10] has been utilized to combine the 
models resulting from training the agents in their local 
environments and create a global model by 
aggregating the parameters of the local models at the 
end of each training round. The obtained global model 
is then shared among all local models to be used as an 
initialization for the next training round until each of 
the local models converges. The workflow of the work 
can be summarized as follows:  
 
a) Several RL algorithms such as Deep Q-Learning 

with Neural Networks (DQN), advanced Actor-
Critic (A2C), and Proximal Policy Optimization 
(PPO) have been tried to train the agents and 
compare their performances to find the best 
algorithm suitable for the game’s setting.  

 
b)   Four environments with different wall shapes have 

been created using environment wrappers of the 
PettingZoo simulator. Three of these environments 
were used to train the federated global model and 
one to test it.  

c) Federated learning has been implemented by 
aggregating the local models resulting from training 
the agents in the environments allocated for the 
training purpose using the suitable RL algorithms to 
form a global model. 
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d)  The performance of the global model and the local 

models has been compared in the unseen test 
environment to demonstrate the efficacy of 
federated learning in such environments. 

 

 
(a) Battlefield 

environment 

 
(b) Agent environment cycle 

Fig. 1. Battlefield environment with 12 red agents vs 12 blue 
agents, and the agent-environment cycle. 

 
The following sections introduce the key 

concepts used in the work. For example, Section II 
introduces the agents, environments, and the simulator 
used in the project. Section III explains how to create 
and split new environments for training and testing. 
Section IV presents three different algorithms used to 
solve the game and compares their implementations. 
The usage of federated learning is explained in Section 
V. The results and findings of our simulations are 
presented in Sections VI and VII, where different 
approaches are investigated to improve the 
performance of each implementation. Finally, Section 
VIII concludes the paper and provides potential future 
research based on the findings of the project. 
 
 
2. Agent and Environment 
 
A.   Environment 

For this project, each environment is created 
and simulated using PettingZoo. PettingZoo is a 
Python library for conducting research in multi-agent 
reinforcement learning, akin to a multi-agent version 
of Gym [11]. PettingZoo includes several families of 
environments to test reinforcement learning 
algorithms and allows us to use third-party 
environments through wrappers. Magent is one of the 
families of environments included in PettingZoo, 
created by Zheng et al. [12]. Magent includes 
Battlefield, which is what was used for this project. 
Battlefield is a two-team battle game where each agent 
has to find out the best way to maximize their own 
reward while maximizing their team’s success. 

Meanwhile, the agents have to maneuver around pre-
defined obstacles in a medium-sized map, as seen in 
Fig. 1. 
 
B.  Agent 

Agents are rewarded based solely on their 
individual performance, without consideration for the 
performance of their teammates or opponents, which 
complicates the implementation of team cooperation. 
Since agents regenerate health slowly, a strategy that 
prioritizes rapid elimination of enemies is favored 
over a slower, tactical approach. The environment 
includes two teams, each consisting of 12 units. Units 
take turns sequentially, starting with unit 0 to 11 from 
the red team, followed by unit 0 to 11 from the blue 
team, as illustrated in Fig. 1(b). Every unit has 10 HP 
and recovers 0.1 HP per turn. Each attack inflicts 2 HP 
of damage on enemies, and attacks on teammates are 
ignored. As in all Magent environments, agents can 
either move or attack during their turn, but not both. 
Positive rewards include 5 points for eliminating an 
enemy and 0.2 points for attacking an opponent, while 
penalties consist of -0.005 points per turn, -1 for 
attacking, and -0.1 for dying. 
 
C. Action and State Space 

In terms of the action space available for each 
agent, the space is discrete and has 12 possible move 
actions plus eight attack actions. The action space is 
shown in Fig. 2. The state space is an 80x80 matrix, 
the same size as the map, containing 0/1 for blue and 
red team presence and HP and the obstacle present, 
thus giving the location and health of each agent and 
obstacles’ locations. HP values are normalized (0-1 
range). The observation state is an array of shape (n 
agents, view width, view height, n channel) for all 
agents. HP is the normalized health point (range 0-1). 
The channels are team blue HP and presence, team red 
HP and presence, and Minimap is used to give a fuzzy 
global observation to the agents. 

 
Fig. 2. Battlefield environment parameters, its observation space 

and action space. 
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3. Simulation Setup 
 

Each local model was trained on environments 
with slightly different wall setups, and the final testing 
was done on an unseen environment. In Fig. 3, the 
different wall setups used are shown. The wall setups 
used for training and testing was randomized to reduce 
the potential bias of intentionally choosing a particular 
wall setup for testing. In particular, for the 
environments used in this project that did have walls, 
pnorm unit circles have been drawn from the centers 
of the displays. The diamond wall setup is the L1-
norm unit circle, the circle wall setup is the L2-norm 
unit circle, and the L3 wall (rounded, but squarish with 
softer corners) setup is the L3-norm unit circle. These 
were chosen because each wall setup offers slightly 
different properties and takes up different amounts of 
area. Additionally, the code for each environment only 
had to be minimally changed. 
 

(a) No wall  
 

(b) Circle Wall  

 
c) L3-Norm Unit Circle Wall 

 
(d) Diamond Wall 

 
Fig. 3. Different wall setups used in training and testing. Wall 

setups (a) - (c) were used in training and wall setup (d) was used 
for testing the final federated model. 

 
 
4. Implemented Approaches for Solving the 

Game 
 
A.   Deep Q-Learning with Neural Networks  

The Deep Q-Network (DQN) algorithm 
integrates a nonlinear function approximation method 
called Deep Neural Network (DNN) with the Q-
learning algorithm [3]. This approach employs a 
multi-layered neural network that generates a vector 

of action values for each input state. Key components 
of this algorithm include the use of a target network 
and an experience replay buffer. DQNs have 
demonstrated the ability to reach human-level 
performance across various Atari games [13]. These 
algorithms are remarkably flexible and stable, 
showing state-of-the-art performance, and have seen 
many extensions. To address the overestimation bias 
of Q-learning, Double DQN (DDQN) was proposed, 
which decouples selection and evaluation of the 
bootstrap action [14]. The authors in [3] used the last 
four frames as input of their DQN, which allowed the 
model to access more information than just the current 
observation. To help the agent remember older 
information, the authors in [15] modified the DQN 
architecture by adding a recurrent layer between and 
introducing Deep Q-Learning with Recurrent Neural 
Networks(DQRN). In this project, DQN based on 
Neural Fitted Q Iteration was used to solve the 
multiagent battlefield game. The DQN in the project 
also includes a replay buffer, target network, and 
gradient clipping technique for stability and avoiding 
large updates during the training phase. 
 
B.  Actor – Critic 

Actor-Critic is a popular RL algorithm that 
combines policy-based and value-based approaches. It 
consists of two key components: the actor, which is 
responsible for selecting actions based on a policy, and 
the critic, which evaluates the actions by estimating 
the value function. In this architecture, the actor 
updates the policy parameters to achieve maximum 
rewards. the critic provides feedback on the actions the 
actor took by estimating the TD error, where TD is. 
By doing so, the critic reduces the policy gradients’ 
variances and maintains the training process’s stability. 
As this method learns both the value and policy 
functions concurrently, it converges faster and thus 
proves to be highly efficient. Variants of the actor-
critic algorithm, such as Synchronous Advantage 
Actor-Critic (A2C) and Asynchronous Advantage 
Actor-Critic (A3C) [6], have been widely used in deep 
RL applications. In this project, the synchronous 
advantage actor-critic (A2C) approach was utilized to 
play the Magent Battlefield game with the trained 
agents. 
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C.  Proximal Policy Optimization 
Proximal Policy Optimization (PPO) is a 

reinforcement learning algorithm designed to balance 
efficiency and stability in policy updates. Unlike 
traditional policy gradient methods, PPO restricts the 
margin of the change in policy by utilizing a clipped 
objective function. This function puts a limit on the 
gradient of policy, i.e., the difference between the new 
and old policy, to a specified range and so prevents 
large fluctuations in action probabilities, The process 
helps to stabilize the training process. PPO is an on-
policy algorithm as it updates the policy using the 
trajectories of the current policy, thereby enhancing 
sampling efficiency. PPO simplifies the TRPO [16] 
while achieving similar performance but with less 
computational overhead. Due to its robustness and 
ease of implementation, PPO has become a preferred 
algorithm for Deep RL tasks. PPO has demonstrated 
state-of-the-art results in various domains, from games 
to robotic control. 
 

 
 

Fig. 4. Federated learning architecture and the client-server 
model [17]. Each client is solving a Battlefield game with a 

different environment and their model is being shared to update 
the global model 

 
 
5. Federated Learning 
 

Federated learning is a distributed machine 
learning approach where models are trained across 
multiple devices, servers or environments without 
transferring the data to a central server/environment 
[18]. Separate models are trained on their own 
server/environment and the model updates, like 
gradients, are sent to a central environment, which is 
aggregated to update a global model. This method is 
useful when two or more parties want to 

collaboratively build a model using their independent 
datasets. The resulting model’s performance is often 
comparable to that of a centrally trained model with 
all the data combined. Federated learning can be 
implemented in various architectures, such as peer-to-
peer or client-server models. In this project, a client-
server model [17] was considered where multiple 
Battlefield games were played in different 
environments. In this project, the agents in three 
different environments were trained to form their local 
models, and the FedAvg algorithm [9] was used to 
create a global model by taking the average of the 
parameters of the local models with a view to have 
better generalization and enhanced performance in 
new environments. Algorithm 1 illustrates the 
implementation of the FedAvg. 

 
Algorithm 1 Federated Averaging (FedAvg) 

 
1: Input: Number of clients K, number of communication       
    rounds T , learning rate η, local epochs E, batch size B 
2: Server initializes: global model weights 𝑤଴ 
3: for each round t = 1, . . . , T do 
4:      Server selects a random subset of clients St  ⊆ 

{1, 2, . . . , K} 
5: for each client k ∈ St in parallel do 
6:     Client k downloads global model weights 𝑤௧  
7:     Client k updates local model by solving: 
  𝑤௧

௞ ← 𝑤௧ − 𝜂∇ℓ௞(𝑤௧; D௞) 
     using local data Dk for E epochs with batch size B 
8: end for 
9: Server aggregates local models:  

𝑤௧ାଵ ←
1

|𝑆௧|
෍ 𝑤௧

௞

௞ఢௌ೟

 

10. end for 
11: Output: Final global model weights 𝑤்  

 
 
6. Implementing RL Policies for Local 

Games: Algorithm Selection 
 

First, we aim to find the most suitable RL 
algorithm for the Magent battlefield gam setting. DQN, 
A2C, and PPO methods were tried and PPO was found 
to yield the most rewards among the approaches. 
Hence, the PPO was chosen to incorporate into the 
project to train the local models. After each round of 
training the local models in three different 
environments, the FedAvg was used to get a global 
model of which parameters were utilized as the initial 
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parameters for the local models for the following 
round. The final global model was obtained after three 
such rounds of training. 
 

a) Local environments used for 
training 

(b) New diamond wall 
environment 

 
Fig. 5. Reward of the federated and vanilla (non-federated) PPO 

algorithms. 

 
7. Experimental Results 
 

To test the performance of the federated 
models and non-federated models, each of them was 
evaluated in the local environments and a new 
environment. Fig. 5 (a) shows that the non-federated 
models give us higher rewards than the federated 
models in their own environment and Fig. 5 (b) that 
the federated model provides higher rewards in a new 
and unseen environment. As the non-federated models 
are trained on their local models in opposition to 
federated models, which are trained by global 
parameter sharing, non-federated models outperform 
the federated model in their corresponding local 
environments. On the other hand, the federated models 
outperformed the non-federated models in a 
completely new environment which was expected as 
they were trained to enhance generalization. Fig. 6(a) 
also shows that the red agents trained in a non-
federated manner were able to kill their oppositions 
quickly in their local environment, but struggled to do 
so in an unseen environment as shown in Fig. 6(b). On 
the other hand, the red agents using the global model 
were able to eliminate their opposition fast in the 
unseen environment, as shown in Fig. 6(d), but failed 
to achieve the same in one of the local environments, 
as shown in Fig. 6(c). Hence, it was clear from the 
experimental result that federated learning increases 
the agents’ performance and yields higher rewards in 
unseen environments, as it enhances generalization. 
 
 

  
(a) Local environment with no 

federation 
 

(b) New environment with no 
federation 

  
(c) Local environment with 

federation 
(d) New environment with 

federation 
 
Fig. 6. The result of the Battlefield game. (a) In the setting with no 
federation agents trained using non-federated model were able to kill 
opponents faster in local environment. (b) Agents trained using non-
federated model were not able to kill opponents quickly in new 
environment. (c) Agents trained using federated model were not able to kill 
opponents quickly in local environment. (d) Agents trained using federated 
model were able to kill opponents faster in new environment. 

 
 
8. Conclusion and Future Work 

 
The project shows that federated learning can 

enhance the performance of reinforcement learning 
algorithms within multi-agent systems when agents 
interact with entirely new environments. However, 
training and testing were limited to only a few 
environments, which will be expanded in future work. 
Additionally, to further investigate the efficacy of 
federated learning, the project will be simulated with 
algorithms beyond FedAvg to determine whether they 
improve agents’ efficiency in gameplay. Future work 
will also explore the effectiveness of the federated 
learning and multi-agent learning combination in 
diverse applications, such as robotics, healthcare, and 
telecommunications, as any multi-agent problem 
involving unpredictable environments stands to 
benefit from the robustness that federated learning 
offers. 
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