IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025 55

Advancements in Call Graph Methodologies for Enhanced Program
Comprehension: A Review

Rakan Alanazi ',

Department of Information Technology,
Faculty of Computing and Information Technology,
Rafha 91911, Saudi Arabia

Abstract

In the evolving landscape of software development, where
maintaining and understanding complex systems is increasingly
challenging, Call graph techniques play a critical role in enhancing
software comprehension by providing a visual and structural
representation of function calls within a system. This paper
explores the role of call graphs in simplifying software
maintenance and debugging. It highlights how call graphs
significantly improve developers' understanding of system
architectures and function interactions, reducing the time spent on
manual code exploration. Furthermore, the paper explores recent
advancements in call graph techniques, particularly the integration
of machine learning and deep learning models with traditional call
graph approaches. This hybrid methodology demonstrates
enhanced accuracy and relevance in tasks such as program
comprehension and code refactoring, making it a valuable tool for
modern software engineering practices.

Keywords:

Call Graph; Program Comprehension, Software Comprehension;
Software Analysis.

1. Introduction

As software systems become complex, so do
the relationships between various components,
making it increasingly difficult for engineers to gain a
comprehensive knowledge of the system. Without a
thorough understanding of the software's structure and
dependencies, changes might have unexpected
consequences, raising the possibility of errors and
system instability. Effective program comprehension
is essential for various types of software development
tasks, including reuse, debugging, testing,
maintenance, and evolution. Usually, developers use
system documentation to gain a high-level
understanding of the software, which they then map to
the actual implementation. However, due to the
dynamic nature of software development,
documentation is frequently outdated and does not
correctly reflect the current status of software [1]. This
mismatch increases the effort of understanding the

Manuscript received November 5, 2025
Manuscript revised November 20, 2025

https://doi.org/10.22937 /IJCSNS.2025.25.11.6

system, making manual mapping time-consuming and
error prone [2]. To overcome these challenges,
developers turn to various analysis techniques that
enhance their understanding of the software’s
structure and implementation.

Fig. 1. Snippet of source code in Java and its corresponding call graph

One of the most widely used techniques for
facilitating software comprehension and operational
analysis is the call graph. Call graphs play an essential
role in simplifying tasks related to software
maintenance, debugging, and evolution by providing
a visual representation of caller-callee relationships
within a system. By doing so, they offer developers a
clear view of function interactions, which helps in
identifying dependencies and understanding the flow
of execution. The traditional call graph, which
represents function calls as directed graphs, has been
a fundamental tool for visualizing software structure
and dependencies. However, limitations such as
single-level abstraction and static representations have
hindered its effectiveness in facilitating
comprehensive understanding. Figure 1 represents the
function call graph of WEKA [3], an open-source data
mining software tool written in Java.

Recent researches have focused on addressing
these challenges through innovative methodologies

56 IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

and tools. For instance, various researchers [2,4,5,6]
have developed advanced visualization tools that
enhance the graphical representation of call graphs,
allowing for a more improved understanding of
software systems. Notably, techniques such as
hierarchical clustering [7] and multi-level abstractions
[5,8] have emerged, enabling developers to visualize
call graphs at varying granularity levels, thus
improving the comprehensibility of large codebases.

Moreover, the integration of semantic
information with call graph structures provides a more
detailed view of code dependencies. For example, the
Semantic Code Graph (SCG) [9] model captures both
the contextual meanings and structural relationships
within the code. This enriched perspective supports
software comprehension by revealing how different
parts of the code interact, and it also helps identify
potential issues that may arise from these
dependencies

Additionally, the application of neural network
models to call graph analysis has shown promising
results. Recent studies [8,10] have demonstrated that
incorporating call network information into neural
models significantly improves the performance of
source code summarization, aligning the generated
outputs more closely with human expectations. This
advancement underscores the importance of structural
information in developing more accurate and relevant
representations of software components.

Furthermore, call graphs have been effectively
employed in analyzing software evolution [11,12] and
defect prediction [13]. Tools such as GraphEvo [11]
facilitate the examination of changes across different
software versions, providing valuable insights into
structural evolution, while novel defect prediction
methods leverage deep learning techniques to enhance
the identification of potential issues in evolving
software systems.

We restricted the scope of our literature review
to research conducted within the past six years,
specifically from 2018 onward. The reason for this
was to ensure that the review focuses on the most
recent advancements and updates in the field,
reflecting the current state of knowledge and
technological progress. By narrowing the timeframe,
we aim to capture the latest trends, methodologies, and

innovations that have emerged in the study of call
graphs and their role in program comprehension. Our
search strategy involved the use of specific keywords
to target research directly related to the topic. The list
of search terms included "Call Graph" and "Program
Comprehension" with variations and combinations of
these terms applied to capture a broad range of studies
addressing different aspects of call graph analysis,
software comprehension, and their applications in
software maintenance and debugging. By limiting the
search to recent studies and employing targeted search
terms, we ensured that the review presents an up-to-
date and relevant synthesis of research, emphasizing
the importance of call graph techniques in modern
software development.

The rest of this paper is organized as follows:
Section 2 presents a brief background on the topic of
call graphs. Section 3 discusses the related work.
Finally, Section 4 concludes the paper.

2. Background

In this section, we present a brief background
on the topic of call graphs and define some of the
terms repeatedly used in the rest of this paper. In a
software system, a call graph [13] is represented as a

directed graph G = (V,E), where {V} is the set of
entities, and {E} is the set of edges. Each edge, {e} in
E , represents a call between two entities (Ugqyer
Veallee) - The in-degree of a node v, denoted by
deg™ (v), refers to the number of incoming edges to
node v, while the out-degree, deg™ (v), indicates the
number of outgoing edges from node v. Figure 2
illustrates snippet of source code in Java and its
corresponding call graph.

In object-oriented programming (OOP), call
graphs can be constructed at different levels of
abstraction, including Function Call Graph (FCG),
Class Call Graph (CCG), and Package Call Graph
(PCQ). Each type of graph provides a distinct view of
the system, with FCG focusing on the interactions
between individual functions, CCG visualizing the
relationships between classes, and PCG capturing the
dependencies between packages. These different
perspectives enable developers to analyze the system
from multiple vantage points, facilitating a deeper
understanding of the software and allowing for more
effective maintenance and evolution of the codebase.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025 57

public class HelloWorld{

P
2
3 public static void main(String [Jargs){
4 System.out.println(“Hella");
5 f10);
6 }
7
3

public static void f1(){
9 System.out.println("Rakan");
18 f2();
11 £3();
12 }

14~ public static void f2(){
15 System.out.println("1");
16 }

17+ public static void £3(){
18 f4();

19 }

20~ public static woid f4(){
21 System.out.println("!!");

22 }
23 }

Fig. 2. Snippet of source code in Java and its corresponding call graph

3. Literature Review

Several researchers have developed diverse
tools for creating and visualizing call graphs of
systems [7, 11, 15, 16, 17, 18, 19]. These tools are
primarily used to render graphical representations. For
instance, Alnabhan et al. [18] proposed a two-
dimensional software visualization approach where
different geometric shapes represent various source
code entities. Specifically, classes and methods are
depicted as rectangles and circles, respectively, with
arrows illustrating their relationships.

However, these tools have limitations in
visualizing call graphs [5], including the fact that they
are limited to a single level of abstraction, typically at
the function level, which may be insufficient for
various maintenance activities that require diverse
levels of comprehension. In addition, these tools
frequently only show a section of the call graph,
failing to reveal the entire system structure, which may
affect effective software comprehension. Also,
including all system components, such as classes,
methods, and attributes, might cause information
overload, making it harder to understand the software
system. Furthermore, generated call graphs are often
provided in static formats such as PNG and DOT,

which take additional work to comprehend and
understand, potentially lowering program
comprehension efficiency [6].

Several researchers have contributed to
addressing the challenges associated with program
comprehension and visualization tools. One such
effort is seen in Graph Buddy, an interactive code
browsing tool proposed in [6]. The tool can be
integrated as a plugin for popular IDEs, Graph Buddy
enhances code comprehension by visually
representing code dependencies through a semantic
code graph. This approach allows developers to
explore complex code relationships more effectively
while ensuring that only relevant details are displayed,
thereby preventing information overload and
maintaining clarity in large codebases. The tool
supports both Scala and Java and has been evaluated
in a user study involving 10 programmers. The study
revealed that tasks involving code comprehension
were considerably more challenging without the
visual assistance provided by Graph Buddy,
demonstrating the tool's potential to improve the
process of navigating and understanding complex
codebases. This work aligns with ongoing efforts to
improve program comprehension through
visualization and semantic analysis, offering a
practical solution for managing code dependencies in
large software systems.

Recently, authors in [20] proposed FcTree, a
tool designed to visualize call graphs during the
execution of a program. The design of FCTree
optimized the advantages of existing visualization
tools to address the limitations of existing call graph
visualizations. FcTree creates a visual representation
that highlights the sequence and relationships between
function calls as they occur in real-time. This
visualization aids developers in understanding the
dynamic behavior of software by providing clear
insights into how functions interact during execution.
The tool helps in debugging, performance analysis,
and program comprehension by making it easier to
trace the flow of execution and identify potential
issues or inefficiencies within the code. The authors
conducted a pilot study to evaluate the effectiveness
of FCTree. This study revealed that existing single-
view function call visualizations often fail to present
the necessary information comprehensively. The
evaluation included both subjective and objective

58 IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

experiments, as well as a field study in a real-world
scenario, demonstrating the practical applicability of
FCTree.

Gharibi et al. [17] proposed a hierarchical
clustering technique for static call graphs. The
approach facilitates program comprehension by
grouping call graphs into relatable clusters. These
clusters are driven by similar execution paths. The
hierarchical clustering approach allows developers to
understand big software systems by breaking them
down into more manageable subcomponents.
However, a potential drawback of this technique is the
creation of a large number of cluster nodes. This can
lead to an overly complex structure, making it difficult
for developers to navigate through the numerous
clusters efficiently. While the technique helps to
reduce the complexity of large codebases, managing
and interpreting a large number of clusters may still be
challenging in cases of very large or complex software
systems.

To address the limitations of hierarchical
clustering in managing large call graph structures, the
author [8] presents an innovative approach that
enhances program comprehension by labeling and
describing clusters of execution paths using topic
modeling techniques. As clustering algorithms
generally do not provide insight into the meaning of
the resulting clusters, the author employs Latent
Dirichlet Allocation (LDA) and Bidirectional Encoder
Representations from Transformers (BERT) models
to automatically generate meaningful labels for these
clusters. Cluster labeling is crucial as it serves as an
indicator of the quality and success of the clustering
process, helping developers interpret and understand
the grouped execution paths. By applying these topic
models, the approach aims to analyze and interpret the
semantic meaning behind the clusters, ultimately
providing developers with clearer insights into
software functionality. In his case study on two
systems—SweetHome3D and jMonkeyEngine—a
combination of LDA and BERT (BERT+LDA)
yielded the best results, significantly improving the
coherence of cluster labels. This combined model
offers a richer, more contextual understanding of the
clusters by describing the functionality of a group of
execution paths in a more meaningful way. This
technique not only aids in program comprehension but
also enhances the usability of the hierarchical

clustering approach by offering richer, more

meaningful descriptions of cluster contents.

A similar direction is taken by Bhattacharjee et
al. [21], presenting a novel approach to improving
program comprehension through the creation of an
abstract code summary tree. This technique involves
transforming a hierarchical clustering tree (AHC tree)
of a program's call graph into a more understandable
format by flattening the clusters and reducing the
number of nodes for simplicity. The abstract nodes are
then summarized into natural language text derived
from method comments, helping developers grasp
high-level overviews of the codebase without needing
to dive into complex code details. To validate the
effectiveness of this method, the authors collected
feedback from developers who used the tool for code
maintenance tasks. The results indicated that the
generated abstract summary tree provided a clearer,
more accessible way for developers to understand
large and complex codebases. This, in turn, made it
easier to perform software maintenance and
debugging activities. The study concludes that this
approach significantly enhances program
comprehension by offering a clear, hierarchical
overview of the code structure combined with
meaningful textual summaries.

Building on this work, Alanazi R. et al. [5,8]
recently introduced a coarsening technique to create
multi-level, hierarchical representations of the call
graph. This advancement addresses the limitations
faced in understanding large call graphs and the issue
of single-level granularity. The proposed hierarchical
clustering approach of execution paths allows for
visualizing the call graph at different granularity levels
for various software units like packages, classes, and
functions, aiding in a more comprehensive
understanding of the software system. The main
contributions of the research include the development
of a mechanism to link hierarchical abstraction
clusters to their corresponding call graphs, enhancing
the visualization and comprehension of the software
system's structure. By focusing on clustering
execution paths over multiple levels of abstractions,
the researchers aimed to reduce the size of the graph
at each hierarchical level, enabling developers to
better understand the software system with varying
levels of granularity, unlike approaches that provide a
single level of granularity only.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025 59

The authors measured the effectiveness of
their approach through a comprehensive user study
involving 18 software engineers from various
industries. Participants performed tasks using the
proposed system and provided feedback via a
structured survey, which included questions assessing
the tool's usefulness and usability using the System
Usability Scale (SUS). They evaluated the
meaningfulness of the hierarchical clusters generated
by the tool and its ability to identify software
functionalities, which is essential for program
comprehension. Additionally, the effectiveness was
gauged by the tool's capacity for visual exploration of
execution paths in both call graphs and hierarchical
views, with participants rating its usefulness in these
tasks.

In addition to hierarchical clustering, other
researchers have explored the wuse of vector
representations for software clustering. The authors
[22] propose using vector representations of code
elements alongside traditional call graph structures to
improve the accuracy and relevance of software
clustering. This hybrid approach leverages the
strengths of both techniques: vector semantics capture
the contextual meaning of code, while call graphs
represent the structural relationships between
components. The study demonstrates that integrating
these methods results in more meaningful and useful
clusters, aiding in tasks such as program
comprehension, maintenance, and refactoring. In
particular, the proposed method enhances the analysis
of software systems by integrating document
embeddings, generated via the Doc2Vec algorithm,
with call graphs obtained from Static Graph Analyzers
to form an augmented graph. Utilizing the Louvain
Algorithm on this augmented graph, the method
successfully uncovers the community structure and
proposes module-level clusterings. The integration of

vector semantics and call graph information
effectively generates meaningful clusterings of
software systems, outperforming state-of-the-art

clustering algorithms and traditional agglomerative
methods. The findings show that the proposed method
efficiently recovers the ground truth clustering of the
Linux Kernel, emphasizing the importance of
incorporating semantic information and call graph
data in clustering large software systems.

In another area, the author [23] explores the
structural properties of function-call graphs in open-
source software by applying techniques from complex
network analysis. The authors investigate various
metrics such as degree distribution, clustering
coefficient, and shortest path length to understand the
topological characteristics of these graphs. The study
reveals that function-call graphs exhibit small-world
and scale-free properties, which are typical of
complex networks. These insights help in
comprehending the architectural design and evolution
of software systems, and they highlight potential areas
for optimization and maintenance. The findings
underscore the importance of applying complex
network theory to software engineering for enhanced
software analysis and comprehension.in [9] a new
model for representing code dependencies is presented
named Semantic Code Graph (SGC). The traditional
call graph primarily focuses on the structural
relationships between functions or methods in a
program. It represents how functions call each other,
depicting the flow of execution within the software.
The nodes typically represent functions or methods,
and the edges represent the calls between these
functions. However, the proposed representing
Semantic Code Graph goes beyond the structural
relationships captured in a call graph by incorporating
semantic information. It not only represents the
connections between code elements (like classes,
methods, and variables) but also embeds the meaning
and context of these elements. This model integrates
both the structural aspects of the code and the semantic
relationships, providing a richer, more comprehensive
view of the software. The paper conducts a study that
aims to evaluate the SCG's effectiveness in enhancing
software comprehension compared to existing models
like the Class Collaboration Network (CCN) and Call
Graph (CG) by analyzing eleven open-source projects,
employing various data analysis techniques. The
results indicate that the SCG significantly enhances
software comprehension capabilities compared to the
other models.

Another use of call graphs is in the software
evolution, The paper [11] presents a novel framework
named GraphEvo, which utilizes call graphs to
analyze and comprehend the evolution of software
systems. By examining the changes in call graphs
across different software versions, GraphEvo
identifies and characterizes the evolution of software

60 IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

structures. This framework provides valuable insights
into significant modifications, recurring patterns, and
the overall impact of these changes on software
architecture. The findings indicate that GraphEvo is a
powerful tool for understanding the dynamic nature of
software systems, assisting developers in tasks such as
maintenance, refactoring, and managing software
evolution by offering a detailed view of structural
changes over time. in [12], The paper proposes a novel
approach to analyze the evolution of software systems
through Call Graph Evolution Analytics. This method
helps in extracting valuable information from a series
of evolving call graphs, which represent different
versions of a software system. The author develops
two key techniques: Call Graph Evolution Rules
(CGERs) and Call Graph Evolution Subgraphs
(CGESs). CGERs are designed to capture co-
occurrences of dependencies, similar to association
rule mining, which helps in identifying how different
parts of the software interact. On the other hand,
CGESs focus on the evolution of dependency patterns,
allowing for a more detailed analysis of how these
dependencies shift across different versions of the
software. Together, these techniques provide a
comprehensive framework for analyzing software
evolution and dependency management, which is
crucial for ensuring software stability and reducing
potential errors during the evolution process.

The paper also includes empirical analysis
conducted on ten large evolving software systems,
with a detailed case study on Maven-Core. This
empirical work demonstrates the practical
applicability of the proposed techniques in real-world
scenarios, showcasing their effectiveness in
supporting dependency evolution management.
Furthermore, the author connects his findings to
established theories in software evolution, such as
Lehman's laws, thereby situating their contributions
within a broader theoretical context. Lastly, the author
expresses his intention to publish a more
comprehensive study on Stable CGERs and CGESs
mining, indicating a commitment to advancing
research in this area and providing deeper insights into
software evolution analytics.

Call graphs have also been used in software
defect prediction. The paper [13], presents a novel
approach to predicting software defects by leveraging
deep learning and network portrait divergence (NPD).

The authors propose using network portrait
divergence, a measure of structural differences
between network snapshots over time, to capture the
evolution of software systems. Deep learning
techniques, including Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM)
networks, are employed to analyze software networks
and predict defects. By integrating this metric with
deep learning models, the study aims to enhance the
accuracy of defect prediction. The authors conduct a
study that compares the performance of Network
Portrait Divergence (NPD) with traditional software
metrics like Lines of Code (LOC) and Cyclomatic
Complexity (CO), demonstrating NPD's
outperforming in capturing the evolutionary aspects of
software networks for defect prediction. Also,
Experiments conducted on real-world software
projects further validate the effectiveness of NPD,
showcasing its practical applicability and reliability in
real-world scenarios. The results demonstrate that this
approach effectively identifies potential defects by
considering the dynamic changes in software structure,
thus improving maintenance and quality assurance
processes. This method provides a robust tool for
anticipating defects in evolving software systems,
contributing to more reliable and maintainable
software development.

Furthermore, other advancements in neural
network models have also been applied to call graph
analysis, The authors [10] propose a method for
encoding the context of function calls in a neural
network model in order to produce more accurate and
relevant source code summaries. By incorporating call
network information, the model can gain a better
understanding of function relationships and
dependencies, resulting in increased summarization
performance. The results show that this approach
outperforms existing methods that do not take call
graph context into account, emphasizing the value of
using structural information in neural source code
summarization. A study was conducted involving 20
programmers, the generated summaries were
perceived to be as accurate, readable, and concise as
those written by humans. This finding indicates that
the proposed method not only improves the technical
performance of summarization models but also aligns
well with human expectations and standards for
quality.

IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025 61

4. Conclusion

The advancements in call graph research have
significantly improved the ability of developers to
understand and manage complex software systems.
Although traditional static call graphs are useful,
however, it has been limited in their capacity to
provide comprehensive insights into the intricate
relationships and dependencies within large-scale
applications. Recent methodologies, such as
hierarchical clustering, multi-level abstractions, and
semantic code graphs, have addressed these
limitations by offering more detailed, context-rich,
and dynamic representations of software structures.
These innovations have proven effective in enhancing
program comprehension and aiding tasks like
debugging, maintenance, refactoring, and software
evolution analysis. Moreover, the integration of neural
networks and deep learning techniques into call graph
analysis has led to breakthroughs in areas like source
code summarization and defect prediction. These
models have demonstrated the value of structural and
semantic information, resulting in more accurate
predictions and summaries that align closely with
human judgment. Tools and approaches such as Call
Graph Evolution Analytics further underscore the
importance of call graphs in understanding software
evolution and ensuring system stability over time.
Future research should focus on combining these
methodologies to create even more powerful tools,
further enhancing the capabilities of call graph-based
program comprehension. Through these innovations,
developers will be better equipped to maintain,
analyze, and evolve their codebases effectively.

Acknowledgment

The authors extend their appreciation to the Deanship
of Scientific Research at Northern Border University,
Arar, KSA, for funding this research work through
project number NBU-FFR-2024-1661-06.

References

[1] M. Z. Khan, R. Naseem, A. Anwar, I. U. Haq, A. Alturki, S.
S. Ullah, and S. A. Al-Hadhrami, “[retracted] a novel
approach to automate complex software modularization
using a fact extraction system,” Journal of Mathematics, vol.
2022, no. 1, p. 8640596, 2022.

[2] J. Mortara, P. Collet, and A.-M. Dery-Pinna, “Visualization
of object-oriented software in a city metaphor:
Comprehending the implemented variability and its technical

debt,” Journal of Systems and Software, vol.208, p. 111876,
2024.

[3] I. H Witten, E. Frank, M. A Hall, and C. J Pal, “Data mining
practical machine learning tools and techniques,” 2017.

[4] C.Li, Y.Pei,Y.Shen,lJ. Lu, Y. Fan, X. Linghu, Y. Tian, and
K. Wang, “Pyvisvue3d3: Python visualization from hierarchy
tree to call graph,” SoftwareX, vol. 26, p. 101689, 2024.

[5] R. Alanazi, G. Gharibi, and Y. Lee, “Facilitating program
comprehension with call graph multilevel hierarchical
abstractions,” Journal of Systems and Software, vol. 176, p.
110945, 2021.

[6] K. Borowski, B. Balis, and T. Orzechowski, “Graph buddy—
an interactive code dependency browsing and visualization
tool,” in 2022 Working Conference on Software
Visualization (VISSOFT). IEEE, 2022, pp.152—-156.

[7] G. Gharibi, R. Alanazi, and Y. Lee, “Automatic hierarchical
clustering of static call graphs for program comprehension,”
in 2018 IEEE International conference on big data (Big Data).
IEEE, 2018, pp.4016—4025.

[8] R. Alanazi, Software Analytics for Improving Program
Comprehension. University of Missouri-Kansas City, 2021.

[9] K. Borowski, B. Balis, and T. Orzechowski, “Semantic code
graph—an information model to facilitate software
comprehension,” IEEE Access, 2024.

[10] A. Bansal, Z. Eberhart, Z. Karas, Y. Huang, and C. McMillan,
“Function call graph context encoding for neural source code
summarization,” IEEE Transactions on Software
Engineering, vol. 49, no. 9, pp. 42684281, 2023.

[11] V. Walunj, G. Gharibi, D. H. Ho, and Y. Lee, “Graphevo:
Characterizing and understanding software evolution using
call graphs,” in 2019 IEEE International Conference on Big
Data (Big Data), 2019, pp. 4799-4807.

[12] A. Chaturvedi, “Call graph evolution analytics over a version
series of an evolving software system,” in Proceedings of the
37th IEEE/ACM International Conference on Automated
Software Engineering, 2022, pp. 1-5.

[13] V. Walunj, G. Gharibi, R. Alanazi, and Y. Lee, “Defect
prediction using deep learning with network portrait
divergence for software evolution,” Empirical Software
Engineering, vol. 27, no. 5, p. 118, 2022.

[14] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan,
“An empirical study of static call graph extractors,” ACM
Transactions on Software Engineering and Methodology
(TOSEM), vol. 7, no. 2, pp. 158-191,1998.

[15] W.Jin, S. Xu, D. Chen, J. He, D. Zhong, M. Fan, H. Chen, H.
Zhang, and T. Liu, “Pyanalyzer: An effective and practical
approach for dependency extraction from python code,” in
Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering, 2024, pp. 1-12.

[16] K. Borowski and B. Bali’s, “scg-cli - a tool supporting
software comprehension via extraction and analysis of
semantic code graph,” arXiv.org, vol. abs/2310.03044, 2023.

62 IJCSNS International Journal of Computer Science and Network Security, VOL.25 No.11, November 2025

[17] G. Gharibi, R. Tripathi, and Y. Lee, “Code2graph: automatic
generation of static call graphs for python source code,” in
Proceedings of the 33rd ACM/IEEE international conference
on automated software engineering, 2018, pp. 880-883.

[18] M. Alnabhan, A. Hammouri, M. Hammad, M. Atoum, and O.
Al-Thnebat, “2d visualization for object-oriented software
systems,” in 2018 International Conference on Intelligent
Systems and Computer Vision (ISCV), 2018, pp. 1-6.

[19] V. Salis, T. Sotiropoulos, P. Louridas, D. Spinellis, and D.
Mitropoulos, “Pycg: Practical call graph generation in
python,” in 2021 IEEE/ACM 431d International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 1646—1657.

[20] F. Zhou, Y. Fan, S. Lv, L. Jiang, Z. Chen, J. Yuan, F. Han, H.
Jiang, G. Bai, and Y. Zhao, “Fctree: Visualization of function
calls in execution,” Information and Software Technology, p.
107545, 2024.

[21] A. Bhattacharjee, B. Roy, and K. A. Schneider, “Supporting
program comprehension by generating abstract code
summary tree,” in Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering: New
Ideas and Emerging Results, 2022, pp. 81-85.

[22] M. Papachristou, “Software clusterings with vector semantics
and the call graph,” in Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 1184-1186.

[23] V. Tunali and M. A. A. T uys uz, “Analysis of function-call
graphs of open-source software systems using complex
network analysis,” Pamukkale “"Universitesi M uhendislik
Bilimleri Dergisi, vol. 26, no. 2, pp. 352-358, 2020.

Rakan Alanazi received a Ph.D. in
Computer Science from the University of Missouri - Kansas
City in the United States. His research interests include
Software Analytics, Software Engineering,

Machine Learning, Software Visualization, and Program
Comprehension.

