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Abstract

Coronavirus (COVID-19) disease constitutes one of the
devastating pandemics plaguing humanity throughout the
centuries; within about a year since its appearing, the cumulative
confirmed cases hit 93 million, whereas the death toll exceeds 2
million. Although several vaccines became available for public
worldwide, the speed with which Coronavirus is spread and its
different mutant strains hinder stopping its outbreak. This, in turn,
prompting the desperate need for devising fast, cheap and accurate
tools via which the disease can be diagnosed in its early stage.
Reverse Transcription Polymerase Chain Reaction (RTPCR) test
is the mainstay tool used to detect the COVID19 symptoms.
However, due to the high false-negative rate of this test, physicians
employ chest radiographs as an adjunct or alternative tool. Despite
the wide-availability, low-cost, and timely radiographs screening
results, relying on radiologists to interpret them manually stands
against using radiographs as a diagnostic tool. Motivated by the
need to speed up the radiographic diagnosis of COVIDI19 and
improves its reliability, this paper proposes a novel deep-learning-
based framework dubbed Parallel Deep Neural Networks for
Covid-19 Diagnosis (PDNCD). PDNCD integrates the
competency of convolution neural networks (CNNs) in treating
medical images and the prowess of Recurrent Neural Networks
(RNNs) in recognising clinicopathological characteristics to
process radiographs and contextual resources simultaneously. By
this integration, PDNCD can make perfect classifications even for
those cases in which the infection signs in radiographs are unclear
due to being the disease in early-stage, confounded by other
markers or overlapped by other diseases. Extensive assessments of
PDNCD carried out using several datasets demonstrate average
diagnostic accuracy of 99.9 accuracies, 0.99 Fl-score and near-
unity area under the receiver operating characteristic curve.
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1. Introduction

At the end of 2019, the Coronavirus (COVID-19)
caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) surprised the world with its
rapid spread and catastrophic impact. Within about a year
since the appearance of the first case, the number of
confirmed cases reaches 93 million, whereas the death toll
exceeds 2 million [1]. This pandemic unified the scientists
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and researchers from all disciplines to curb the spread from
all aspects. During the last few months, several institutions
and pharmaceutical corporations claimed that safe and
effective vaccines became available for the public [2].
However, the hope that the pandemic could be finally
defeated has been jeopardised by the appearance of new
mutant strains which are more transmissible [3] which
might back the pandemic's fighting to square one; indeed,
some nations face the second waves and reinforced curfew
and lockdown[4]. This promotes the desperate needs for fast,
cheap, and accurate tools to diagnose the disease in its early
stage.

The key challenge facing rapid diagnoses of
COVID-19 is the vast and diverse symptoms presented on
patients [5,6] whereas the majority of patients suffer from
minor symptoms, (e.g., fever, cough, or tiredness) others
might have more severe signs (e.g., loss of movement or
shortness of breath) or even no symptoms at all. Hence most
of the diagnoses techniques of COVID-19 concentrate on
checking whether or not the antigens of this virus are
presented in the respiratory of the suspected cases[5-7].
Reverse Transcriptase Polymerase Chain Reaction (RT-
PCR) is the standard test in diagnosing of COVID-19
worldwide due to its ability to identify antigens of COVID-
19 [7-9]. RT-PCR requires to collect samples from nose or
throat and then treats them chemically to isolate and then
identify all known viral genetic variations of the disease.
Besides, the long time required by the RT-PCR test to
produce the results and the limited availability of its kits in
some states; it also suffers from a high false-negative ratio
(i.e., the situations in which the tests show that the suspected
cases are healthy whereas they are infected). Specifically,
several research groups estimate this rate as high as 61%
[10,11] while other references show that the maximum
accuracy of RT-PCR is about 0.8 and can only be obtained
on or after the 8th day of symptom onset [10-12].

With the aim to overcome the critical limitations
found in the RT-PCP test, chest radiographs are used as an
adjunct or alternative diagnostic tool [13,14]. The
invaluable information encoded in these images allows the
physicians to monitor disease progression rather than
determine the infectious status at a single time point as the
case in RT-PCR. This makes them suitable for diagnosing
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of disease as well as an assessment of its severity [13-17].
Some medical studies show that chest images of COVID-
19 patients share some common signs, such as lesions with
ground-glass opacities (GGO), lung consolidation, bilateral
patchy shadowing, pulmonary fibrosis, multiple lesions and
crazy-paving pattern[18,19]. Interestingly, other works
were able to infer the severity-degree of the disease from
the medical images. For instance, [14-15] shows that during
the early stage, the peripheral zone of lungs has multiple
small patchy shadows and interstitial changes; while during
the progression of diseases multiple Ground-Glass
Opacities (GGO) and infiltration start to appear in both
lungs and pulmonary consolidation is considered as a sign
for a severe case.

One of the key challenges that stand against
adopting radiographs as a diagnostic test is the need to
examine each image by a radiologist to decide whether the
case is infected or not. Estimations for the time and
accuracy of the manual examination as introduced in [20]
show that a cardiothoracic fellowship-trained radiologist
takes around a minute on the average to examine an X-ray
image and that the average diagnostic accuracy is about
78%. This is not negligible time, especially when
considering that 30 Million tests weekly are required across
the states to support the mitigation plan, and otherl4
Million tests daily are needed as preventive measurements
[6,21].

Inspired by the ability of deep learning to automate
the diagnosis of several diseases from their medical images
e.g., arrhythmia, pneumonia, and fundus image
segmentation [22,23]. Numerous models were developed to
detect COVID-19 cases, e.g. [24-32]. Most of these models
employ the Convolution Neuron Networks (CNN)
architecture to extract the common visual hallmarks
appearing on the radiograph of patients during the training
phase, thereafter the model utilises its gained knowledge to
judge new unseen cases. Although these models exhibit
high diagnostic reliability; one of the common sources of
their performance leakage is inattention of the contextual
resources. Annotation, epidemiological history, ages, the
clinical manifestation of patients or underlying
comorbidities are some attributes that need to be considered
when interpreting the radiographs. Several medical studies
confirm that the images of patients with different attributes
might have different radiographs' signs; for instance [33]
shows that the image of COVID-19 pediatric patients has
lower pulmonary lobes with higher bronchial wall
thickening than adult patients. Whereas [34,35] reported
that the image features of COVID-19 could not easily be
distinguished in the presence of viral pneumonia, Severe
acute respiratory syndrome (SARS) and/or Middle East
Respiratory Syndrome (MERS) diseases. Furthermore,
Other works report that some contextual factors might
confound the deep learning algorithms such as acquisition

parameters, projection-type or even presence of tubes,
catheters [36].

This paper attempts to overcome the
aforementioned challenge by introducing a novel deep
learning model dubbed Parallel Deep Neural Networks for
Covid-19 Diagnosis (PDNCD). The underlying approach of
PDNCD is to treat the images and their contextual resources
simultaneously by running two deep learning networks in
parallel. Firstly, a CNN, which is deep in spatial, is used to
deal with images due to its competency in this domain.
Secondly, a Recurrent Neural Network (RNN) [37] which
is deep in time, is used to process images' contextual
resources. Specifically, RNN has been chosen here due to
its ability to consider the inputs' temporal dependencies.
Hence changes spotted during the disease progression can
be memorised in the network and used to make early
prognostic for other cases. Another compelling reason for
adopting RNNs in modelling contextual resources is being
these networks are not confined to fixed-length inputs or
outputs; thus, data of variable length can be treated
concurrently. PDNCD is a two-stage architecture in which
the first stage is used to build up the medical knowledge
from processing contextual resources by RNN and visual
features by the CNN to steer the focus in the second stage
towards those signs that are significant to confide or dispel
diagnostic suspicion. This focal is performed via another
CNN and RNN layers whose parameters are tuned based on
the previous layers' outputs with the aid of attention
mechanisms [38]. Interestingly RNN layers built their
knowledge from two sources: specific metadata associated
with radiographs and more general COVID-19 corpus.
Finally, PDNCD employs concatenate and fully connected
layers to consolidate the knowledge gained from the two
networks to classify the case either as positive or negative.

According to the best of our knowledge, this is the
first work considering using the radiographs' contextual
resources to improve the detection capabilities of the
COVID-19. In particular, the key contribution of this work
can be summarised as:

1- Develop a novel class of deep learning architecture in
which medical text from both unstructured (corpus)
and structural (metadata of radiographs) in conjunction
with spatial information (encoded in radiographs) are
processed in parallel to enhance detection capabilities
of COVID-19. Besides the advantages of this model in
rolling out differential diagnoses of this diseases, the
proposed model paves the path towards building more
sophisticated models that can be evolved over the time
to accommodate updates, e.g., different mutant strains
or new diagnosis findings.

2- Reduce the time and computing resources required to
train the deep learning model by incorporating the
attention mechanism in CNN and RNN networks.
Specifically, this mechanism achieves this goal by two
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means; firstly expedite approaching the most
informative partition of the case that is significant to
make a clear diagnosis. Secondly, facilitates treating
radiographs at their highest possible resolutions by
avoiding use of an image preprocessing technique;
hence fine details can be captured accurately.

3- Present comprehensive assessments of the proposed
model from different perspectives using several
radiographs' datasets [24,26,31,38-50] in addition to a
manifold of contextual resources including medical
case study, scholarly articles, epidemiological models
[51-58]. The results of this assessment demonstrate
high capabilities of PDNCD in diagnosing COVID-19
from radiographs with 99.9 accuracies, 0.99 F1-score
and near-unity area under the receiver operating
characteristic curve.

The remaining of this paper is organised as follows in
section Il related works are explored, section 3 discusses the
methods used to develop PDNCD and asses it. In section 4
the dataset used for assessment of the proposed model in
conjunction with results and discussion are presented, and
finally, section 5 concludes this work.

2. Related works

Since the appearance of COVID-19 scientists and
researchers from artificial intelligence discipline have
developed plenty of works and models to curb its outbreak.
Here we aim to review some of these works with the aim to
highlight approaches underpinned them and point out the
merits of our model.

COVIDX-Net[24] is amongst the earliest models
introduced to provide rapid diagnoses for COVID19 from
x-ray images by combining several pre-trained CNN
networks with a binary classifier. COVIDX-Net consists of
seven models that are: VGG19, DenseNet201, InceptionV3,
ResNetV2, InceptionResNetV2, Xception, and
MobileNetV2 each of which is trained and tested
individually. Evaluation of the model's performance was
conducted over small dataset consisting of preprocessed 50
X-Ray cases, half of them suffering from Covid-19 using
80:20 training to the testing ratio. The key findings of this
study demonstrate the capability of pre-trained models to
extract the discriminative features of COVID-19 even over
a smaller dataset. Furthermore, it is also shown that VGG19
and DenseNet201 have the highest accuracy of 90%
whereas the lowest achieved accuracy was 50% due to
InceptionV3. Stimulated by the need to improve the
diagnosis accuracy using small radiographic datasets, some
models employ transfer learning to exploit the knowledge
gained from examining individual cases in building a more
sensitive classifier. The work in [25] proposed a three layers
framework dubbed Decompose, Transfer, and Compose

(DeTraC). DeTraC employs two widely used pre-trained
CNN models: ImageNet and ResNet to extract the local
features appearing in each image individually thereafter
passed them to the decompose layer. The underlying
approach of this layer is to amplify the irregularities of class
boundaries by initiating a sub-class for each distinguished
features found previously. The transfer layer with the aid of
sophisticated gradient descent optimisation method devised
by the authors retrains CNN model using these new sub-
classes. Finally, the compose layer is used to assemble
subclasses into a single binary class stating whether or not
the case is infected with COVID-19. DeTraC is evaluated
using several datasets comprising 105 COVID-19, 11
Severe acute respiratory syndromes and 80 normal samples
and adopting 70:30 training to the testing ratio. This
evaluation demonstrates that DeTraC can attend up to
95.12% overall accuracy. COVIDResNet [26] is another
example of models aiming to improve the performance of
pre-trained CNN architectures by introducing so-called 3-
step fine-tune techniques. The underlying concept of this
technique is to resize the input radiographs progressively to
different sizes and then adjust the learning parameters
accordingly. According to the results reported in the
original work, COVIDResNet is able to achieve 96.23%
overall accuracy by employing ResNet-50 as a base
network over unbalanced dataset consists of 45 COVID-19,
1203 normal, 931 bacterial pneumonia and 660 viral
pneumonia patients cases.
The work proposed in [27] employs 11 pre-trained
CNN s including AlexNet, GoogleNet, DenseNet, Inception,
ResNet, VGG, XceptionNet, and InceptionResNet to
extract the key features of the X-Ray images, thereafter pass
them to a Support Vector Machine (SVM) which is used to
generate the suitable class. The overall accuracy of 95.33%
was achieved over balanced dataset consists of 127
COVID-19, 127 pneumonia and 127 normal images that
employ 60:20:20 training, validation and testing ratio.
Generative Adversarial Networks (GAN) is a
contemporary deep learning approach in which a new
sample can be generated from the ground truth dataset. A
GAN architecture comprises two models: a generator that is
trained to generate new samples and discriminator that
attempts to classify the sample as either ground truth or fake
(produced by the generator network). Both models compete
in a zero-sum game in which the generator endeavours to
delude the discriminator about the originality of the sample.
The key benefit of GAN in the domain of COVID-19 is to
generate new samples from a small dataset; hence, the
detectability of the model can be improved. The work
presented in [28] employs the GAN approach alongside
transfer learning and augmentation process to formulate a
three-phase diagnosis architecture. In the first phase, both
augmentation and GAN are used to generate new samples
that are passed to the second phase in which 4 pre-trained
models (i.e., AlexNet, GoogLeNet, Squeeznet, and
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Resnet18) are used train the model, and finally, the third
phase is used to test the model. The dataset used in this work
consists of 5863 X-ray images of two classes, 10% of them
are used for training and testing the model, whereas the
remaining 90% are generated from the GAN. This work
reports that Resnetl9 has the highest accuracy of 99%
compared to GoogLeNet, AlexNet, and Squeezed. The
authors of [29] demonstrate GAN's ability to improve the
CNN model's accuracy by more than 10% by introducing
two networks. Firstly, a simple CNN constructed from
several convolutional layers based on VGG16 architecture
followed by the max-pooling and fully connected layers; the
model is trained using a small dataset of 331 COVId-19 and
601 normal cases and achieve 85% accuracy. The authors
then incorporate this CNN with GAN architecture and allow
it to generate 403 of COVID and 721 normal X-ray images;
the assessment shows that 95% can be achieved due to this
modification. Another work presented in [30] employs a
GAN with three pre-trained models: Alexnet, Googlenet,
and Restnet18 which are trained using two scenarios of 4
and 3 classes of 307 image, including normal pneumonia
bacterial, and pneumonia in additional to COVID-19. The
results reported in their works exhibit the outperformance
of Googlenet compared to other architectures under
70:20;10 train:test: validation policy.

Building diagnostic models from scratch is another
technique that has been introduced in many works; COVID-

Net [31] was amongst the pioneer models that adopt this
approach. COVID-Net exploits the Projection-Expansion-
Projection-eXtension (PEPX) structure of conventional
CNN to stack up a large number of convolution layers that
can capture meticulous details perfectly. Another crucial
advantage of PEPX is its long-range connectivity, which
facilities treating large datasets without needing massive
computing resources. According to the results reported in
this work, 93.3% accuracy level can be achieved over
unbalanced, and dataset comprises 183 COVID-19 cases
out of 13,800 total images. Additionally, these results show
that the sensitivity of COVID-Net is higher than VGG-19
and ResNet-50 by 32% and 8% respectively. COVID-
CAPS[32] is another bespoke model that exploits capsule
networks' capability in recognising perturbations in the
spatial relationships of images. In COVID-CAPS each
layer comprises several capsules, each of which uses its
own neurons to capture the common features that are
usually appeared in a specific partition of the image.
COVID-CAPS then employs so-called protocol routing to
determine whether or not the desired object is presented in
the image. The results shown in this work demonstrate the
ability of COVID-CAPS to achieve accuracy of 95.7%
using a simple model consists of 4 convolutional and 3
capsules layer without wusing pretraining. Table 1
summarises some of key findings reported by the peer
works.

Table 1: Summary of some peer works

Reference Number of cases Pre-processing Structure Post-processing Performance metrics
COVID-19 Other
[24] 25 25 Rescaling Tpre-trained CNNs | N/A Accuracy=90
VGG19, ResNetV2, Precision =83
DenseNet201, F1-Score=91
InceptionV3,,
InceptionResNetV2,Xce
ption, and MobileNetV2
[25] 105 91 DA, Histogram, 2pre-trained CNNs: Composition Phase Accuracy =95.12
Feature Extraction ImageNet and ResNet Sensitivity =97.91
using AlexNet, PCA, Specificity =91.87
K-means
[26] 45 2794 DA and ResNet-50 N/A Accuracy =96.23
Rescaling, Sensitivity =100
Normalizing Precision =100
F1-Score=100
[27] 127 254 N/A AlexNet, GoogleNet, | N/A Accuracy =95.33
DenseNet, Inception, Sensitivity =95.33
ResNet, VGG, F1-Score=95.34
XceptionNet, and
InceptionResNet
[28] 183 800 Data Augmentation CNN Explainabiliy-Driven Accuracy =93.3
Audit (GSInquire | Sensitivity =91
Method)
[29] - - N/A Capsule Layer N/A Accuracy =95.7
Sensitivity =90
Specificity =95.8
[30] 58.63 5863 N/A AlexNet,  GoogLeNet, | N/A Accuracy =99
Squeeznet, and | N/A Precision =98.97
Resnet18+ GAN F1-Score=98.97
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It can be seen from the above discussion that most
of the works presented in the open literature rely on CNN
networks to spot the COVID-19 infection signs presented in
radiographs. In contrast, this work proposes a novel deep
learning model in which both image and both unstructured
and structured contextual resources are processing
simultaneously. The proposed model employs RNN in
parallel with CNN and adopts attraction mechanisms to
steer focus dynamically towards those portions of datasets
that are significant in making differential diagnoses.
According to the best of our knowledge, this is the first
work that employs these architectures and techniques to
fight COVID-19 outbreak.

3. Methods

The key contribution of this work is to introduce a
novel class of deep learning architecture in which
contextual resources are utilised in conjunction with the
radiographs images to improve diagnostic reliability of
COVID-19. Subsection 3.1 is devoted to discussing the
method used to develop our proposal where the assessment
methods are presented in subsection 3.2.

3.1 The proposed model

The proposed model is dubbed Parallel Deep Neural
Networks for Covid-19 Diagnosis (PDNCD) and utilises
the deep neuron networks[37] due to their competency in
representing a multifaceted system with a high level of
accuracy. The building block of these networks is the
artificial neuron that was devised to mimic the Biological
neuron found in the mammals' nervous system. Typically,
each neuron comprises an activation function that maps a
given input into the corresponding output by adjusting two
learnable parameters: weight and bias. Arranging neurons
in different layers and cascading them facilitates expressing
a dynamic system as a set of parameters projected over
predefined spaces which is known as universal
approximation theorem [37-59]. PDNCD concentrates two
types of neuron networks: Convolution Neuron networks
(CNN) and Recurrent Neuron Networks (RNN). CNN is
used to treat images dataset due to its ability to recognise
the spatial relationships amongst the samples whereas RNN
is used in the domain of natural language processing due to
its ability to consider the time-evolving of dynamic systems.
Figure 1 illustrates the block diagram of PDNCD.
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Figure 1 Block diagram of PDNCD

As it can be seen in figure 1 that PDNCD consists of
two stages, each of which comprises a CNN and RNN that
are running in parallel to process images and textual
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resources simultaneously. The main aim of the first stage is
to construe visual signs spotted in radiographs in relation to
descriptions reported in the associated metadata. Thus, the
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model can acquire correlations between visual signs and
their metadata, which constitutes the medical knowledge
required in the subsequent stage.

The CNN of the first stage comprises the following
layers: convolutional, non-linearity, pooling, and flatten.
The main functionality of the convolutional layer is to
extract features exhibited in the images by applying a filter
with square Kernal across them. Here twelve kernels with
two differnt sizes of 3 X 3 and 5 X 5 whose values follow a
normal distribution with zero means and unity standard
deviation are wused for the foremost deeper layer,
respectively. The reason behind using larger kernels for
deeper layers is that in these layers there is a need to capture
closer details by removing the noises at a finer scale. The
non-linearity layer is the second important layer that is used
to amplify the differences found in the output of the
convolutional layer (also known as feature map) by passing
them into a non-linear activation function (e.g., hyperbolic
tangent tanh or rectified linear unit, ReLU); here we use
tanh since it can squash the input into a smaller range[—1,1]
whereas compared to a much wider range of ReLU which
whose rang is [0,00]. It is worth noting that, the non-
linearity layer does not change the size of the feature maps,
rather it prepares them to be ready for further feature
extractions by the pooling layer. Fundamentally, pooling
layer aims to downsize feature map processed by the non-
linearity layer by aggregating a feature represented in
several pixels into low dimension pixels. While different
operations can be used to achieve such aggregation such as
max, min or average pooling layer, this stage of PDNCD
employs the maximum pool due to its ability to manifest
lighter pixels out of a darker background. Finally, The
flatten layer is used to reduce the two-dimensional vectors
of spatial features found in the images into a single-
dimension to facilitate further processing.

The RNN network of the first stage, as shown in
figure 1, consists of two layers: embedding and
Bidirectional Gated Recurrent Unit (BGRU). The
embedding layer is used to convert the metadata into
numerical form so that the neuron networks can process it.
This layer employers one hot encoder to express a word into
a binary vector of dummy features and then apply the
dimension reduction algorithm to minimise the number of
these dummy features considering logical interpretation and
semantic structure. The BGRU is constructed from two
GRUs running side-by-side, the first GRU goes with the
forward time directions while the second goes in the reverse
direction. By processing the data in both directions, the
model can foster its understating for diseases progression
without a need to make a chronological order for the data.

The final components of the first stage network
are: concatenate and fully connected layers. The
concatenate layer is used to connect the outcomes of the
upstreaming layers together so that they can be processed
jointly by the subsequent layers despite their different

lengths. In this stage, the inputs of the concatenate layer are
the visual and textual features extracted from the
radiographs and their metadata by the CNN and RNN
respectively whereas the output of the concatenate layer is
a single dimension tensor of their features. Finally, the fully
connected layer is a simple network in which each neuron
is connected to all neurons in the next layer; hence this
topology allows each neuron to consider the information
gathered in the previous layer which in turn consolidate the
learning and expedite the convergence of the model to the
desired outcomes.

The architecture of the second stage of the PDNCD
as shown in figure 1 is identical to the first stage except that
two attention layers are added in front of CNN and RNN
networks and that COVID-19's corpus is used as a dataset
for the RNN network instead of the radiographs' metadata.
These changes are made to enable PDNCD to exploit the
medical knowledge gained in the first stage to focus on
those signs that are significant to confide or dispel a
diagnostic suspicion. Thus, PDNCD can make perfect
classifications even for cases where the infection signs are
unclear due to being the disease in early-stage, confounded
by other markers or overlapped by other diseases. The
attention layers are fully connected networks whose inputs
are the outputs of the first stage and whose outputs are the
weights of convolutional and embedding layers of the RNN
or CNN, respectively. By this arrangement, CNN can
extract the more relevant features to the case and RNN can
find out the pieces of information that are similar to the case
under investigation.

3.2 Assessment methodology

Assessment for the accuracy of the proposed model
is carried out here by comparing its outcomes with respect
to the ground truth data obtained from the dataset. This
assessment uses the following statistical measurements:
accuracy, precision, recall, Fl-score, Receiver Operating
Characteristic (ROC) and Area Under ROC Curve (AUC).
The definitions of these metrics are given with the aid of the
following terms: True Positive (TP), False Positive (FP),
True Negative (TN) and finally False Negative (FN). The
TP counts the cases classified by both our proposed model
and clinically as patients and TN are the numbers of cases
classified by both the model and clinically as healthy.
Conversely, FN and (FT) signifies the number of cases that
are classified by our model as patients (healthy) whereas
clinicians diagnosed them as (healthy) infected.

The accuracy is defined as the ratio of the cases that
both models' predictions and physician's diagnoses are
agreed with respect to the total cases seen by the model,
which can be expressed mathematically as:

TP +TN

A = 1
Couracy = Tp X TN+ FP + FN M
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The accuracy metric quantifies the overall
effectiveness of a classifier as a function of its ability to
make true predictions whether they are positive or negative
cases. In the domain of COVID-19, it is highly desired to
assess the ability of the model in identifying positive cases
so that patients can be isolated to limit further spreading. To
address this requirement, precision and recall are used in
which the true positive is weighed with respect to other
measurements. To be more specific, the precision is a ratio
of those cases classified by the model as true in agreement
with physician diagnoses to the sum of the positive class
predicted by the model either in agreement or disagreement
with physicians. Whereas the recall has the same numerator
of precision, its denominator comprises the false-negative
instead of false-positive as the case in the precision.
Expressions for accuracy and precision are given in
equations (2) and (3), respectively.

.. TP @
pI‘eClSlon = TP + FP
TP
M= 3
re = TP FFN 3)

Fl-score is a composed metric that is defined as the
harmonic mean of precision and recall, i.e.,

F1 S @
SCOT® = 5TP + FP + FN

Equation (4) shows that the maximum value of the F1-score
is achieved if both precision and recall are unity, which
occurs when both false negative and false positive are zeros.
This makes Fl-score important when considering
unbalanced dataset, i.e., the dataset of which the number of
cases of one class is higher than the number of cases
belonging to the second class.

Receiver Operating Characteristic (ROC) is a bi-
dimensional graph that expresses the recall, which also
known as True Positive Rate (TPR) in terms of False
Positive Rate (FPR) which are defined.

FP

FRP = ——
(FP + TN)

)

ROC's importance emerges from its ability to
visualize to what extent the diagnostician differs from
random classifier at various threshold settings; hence, two
or more models can be compared readily. Finally, the Area
Under ROC Curve (AUC) as its name implies, is a
measurement for the total area under ROC which ranging
from zero to 1.

4. Results and Discussion

This section provides descriptions for the dataset
used for the training and testing phases in subsection 4.1
and the results and discussion in subsection 4.2.

4.1 Datasets

With the aim to assess the accuracy of the proposed
model from different perspectives, this work utilises several
datasets collected from [24,26,31,38-50]. The total number
of COVID-19 confirmed, and negative cases used for the
training and testing phases are 10,000 and 15,000,
respectively. All collected images are combined with
randomly ordered and then divided into two mutually
exclusive groups along with their metadata: confirmed and
COVID-19 negative which are denoted in figure 1 by
COVID-19 (+ve) and COVID-19 (-ve) respectively. The
former group comprises images of cases, who do not suffer
from COVID-19 even if they have other lung diseases;
whereas the latter group contains all cases diagnosed as
covid-19 patients. The references and repositories used to
build contextual resources are 500 case reports from [51-
53], 8458 scholarly articles from [54-56] and radiograph
annotations from epidemiological models [57-58]. All
textual sources are kept in their original formats without a
further modification or explanation, whereas the unified
medical language system is used as referenceable
vocabularies for the embedding layer of RNN. Figure 2
illustrates a sample of case studies reported by [60] showing
how the visual signs are changed during the progression of
COVID-19.

The datasets are divided randomly into 80% used
for training the model and the remaining 20% for the testing
purpose; this division was repeated 10 times to form 10-fold
cross-validations. Table 2 summarises the key parameters
used to conduct the training and testing phases.

Table 2: Summary of key parameters used to train and test

Parameter Value

Programming Python 3.8 with Tensorflow library.

Language

Environment Ubuntu machine with Intel(R) Core
19-9900X CPU @ 3.50GHz, 62GB
memory and a GeForce RTX 2060
GPU.

optimiser Adam optimiser

momentum B =0.995 and B, = 0.99

epoch 50

Batch size 32

learning rate 0.0001
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Figure 1 Changes in the visual sings with progression of COVID-19, (a) is taken on the 5Sth illness day shows peripheral ground-glass
opacities in the left lower zone and (b) which is taken 2 days later shows an increase in the diffusely of the ground-glass opacities. Whereas
in (c) which is obtained on the 11th day illustrates a further increase and consolidation in the opacities of the left lung with the extension
of these opacities to the right lung. On the 14th day of the onset, as shown in (d) shows an enlargement of the reticulations in both lungs
with the extension in the right upper zone. the figure (e) which is corresponding to the 17th day depicts intensive bidirectional consolidations
and finally (f) shows extensive consolidation in both lungs. Adopted from [60] .

4.2 Results and Discussion

Table 2 summarises readings obtained from
assessment the proposed model using the predefined
performance metrics. The first column of this table
references the source from which the dataset was obtained,
whereas the second column presents the aspect ratio which

number of categories of these images. A dataset is
considered perfectly balanced if this ratio is one. It is worth
noting that the model is trained over the whole datasets from
all references; hence, this aspect ratio reflects the
percentage used to do the test. The remaining columns give
the average readings recorded from all the 10 folds

is defined as the percentage of the COVID-19 images to the
total images reported in the dataset multiplying by the

conducting on each dataset.

Table 2. Performance readings of our proposal protocol for different datasets

Reference of Aspect Accuracy Precision Recall Fy AUC
dataset ratio
[24] 0.98 098 +1.0x107* 0.93+3.6x1073 0.93+3.6x1073 096 +4.7x107* 0.99 +3.5x107°
[26] 0.95 0.95+1.4x 1075 0.95+5.4x10™* 0.99 +3.5x 1075 0.96 +1.4x 1075 0.99 +1.4x 1075
[31] 2.28 0.97 +1.5%x 10~ 097 +23x107* 0.99 + 1.4 x 1075 093+3.6x1073 0.99 +3.5x 1075
[38] 3.20 0.93+1.9x107° 0.99 +35x10°° 0.95+5.4x107* 0.95+5.4x107* 0.98 +3.6 x 1073
[39] 0.98 0.96 + 1.3 x 1075 094 +2.7%x 1075 0.99 +3.5x 1075 0.97+1.7%x10°5 0.99 +2.6 x 10~°
[40] 0.58 0.96 + 1.4 x 1075 0.96 + 4.7 x 10~* 0.96 +4.7x 10~* 0.93+3.6x1073 099 +35x107°
[41] 1.00 0.97 + 1.5 x 1075 0.94 + 4.6 x10°° 0.93 +3.6x 1073 0.99 +1.3x 1075 0.99 £ 54 x 10~*
[42] 1.20 0.99 + 1.3 x 1075 0.97 + 1.7 x 1075 0.99 +3.5x 1075 0.95+5.4x%x10"* 0.99 +1.7 x 10~
[43] 0.98 0.96 + 1.2 x 1075 0.95+7.1x10"° 0.98 +1.4x 1075 0.93+3.6x1073 0.99 +3.5x 1075
[44] 1.02 0.95+1.2x 1075 0.99 + 2.6 x 10~° 0.95+5.4x10"* 097 +1.7x107° 0.99 + 2.6 x 10~°
[45] 1.90 098+ 1.1x 1075 0.99+3.6x 1075 097 +1.4x 1075 0.96+4.7x10°* 0.93+3.6x1073
[46] 4.28 0.94 + 1.0 x 1075 0.98 + 4.6 X 10~° 0.99 +3.5x 1075 0.99 +£2.6x10°° 0.99 +1.3x 1075
[47] 2.50 0.98 + 1.5 x 1075 0.99 +8.6 X 1077 0.97 + 1.4 x 1075 0.97 +1.7x 1075 0.99 £ 54 x 10~*
[48] 0.12 0.98 + 1.4 x 1075 0.99 + 5.4 x 1077 0.93 +3.6x 1073 0.96 +4.7 X 10~* 0.99 +3.5x 1075
[49] 0.98 0.95+1.2x107° 0.99 + 2.6 x 10~° 0.99 +3.5x 1075 0.97+1.7%x10°5 0.98+3.6x1073
[50] 0.14 0.99 +3.5x 1075 0.95+5.4x 10~* 0.93+3.6x1073 0.99+1.3x107° 099 +54x107*
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A further assessment for our proposal was
conducted by comparing the advantage of parallel
architecture; two versions of the proposed models were
used. Firstly, the PDNCD architecture presented in figure 1
and a modified version of PDNCD in which all RNN

proposed model,
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networks are removed thus PDNCD was converted to a
cascading of CNN networks as the case with other peer
works dubbed SDNCD. Comparisons between ROC's of
SDNCD and PDNCD for 16 datasets are illustrated in figure
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Figure 2. ROC of the dataset

As can be seen from the assessment results that the

PDNCD,

exhibits outstanding

performance over all datasets. This is attributed mainly to
the capability of the parallel architecture to exploit the
knowledge gained from both radiographs and contextual
resources to improve diagnosis of COVID-19. Another
compelling reason for this outperformance is using the
attention mechanism in the second stage. This mechanism
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eliminates a need to employ an image-processing technique
which in turn enables PDNCD to extract fine details
accurately. It can be seen from table 2 that the aspect ratio
has a minor effect of the total performance metrics which is
attributed to the ability of PDNCD to make perfect
classifications even for cases where the infection signs are
unclear due to being the disease in early-stage, confounded
by other markers or overlapped by other diseases. Hence,
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CNN can extract the more relevant features to the case and
RNN can find out the pieces of information that are similar
to the case under investigation despite the size of the sample
fed into the model. Figure 2 shows that removing the
parallel architecture from PDNCD can degrade the
performance of the classification significantly. Since
inattention of the contextual resources yields a week model
that depends on spotting the visual signs that might be
overlapped by other markers.

5. Conclusion

This paper proposed a novel deep learning model
dubbed Parallel Deep Neural Networks for Covid-19
Diagnosis (PDNCD) whose underlying approach is to treat
the images and their contextual resources simultaneously by
running two CNN and RNN networks in parallel. PDNCD
is a two-stage architecture in which the first stage is used to
build up the medical knowledge from processing contextual
resources by RNN and visual features by the CNN to steer
the focus in the second stage towards those signs that are
significant to confide or dispel diagnostic suspicion. This
focal is performed via another CNN and RNN layers whose
parameters are tuned based on the previous layers' outputs
with the aid of attention mechanisms. According to the best
of our knowledge, this is the first work considering using
the radiographs' contextual resources to improve the
detection capabilities of the COVID-19. Comprehensive
assessments of the proposed model from different
perspectives demonstrate the high capabilities of PDNCD
in diagnosing COVID-19.
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