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Abstract 
Coronavirus (COVID-19) disease constitutes one of the 
devastating pandemics plaguing humanity throughout the 
centuries; within about a year since its appearing, the cumulative 
confirmed cases hit 93 million, whereas the death toll exceeds 2 
million. Although several vaccines became available for public 
worldwide, the speed with which Coronavirus is spread and its 
different mutant strains hinder stopping its outbreak. This, in turn, 
prompting the desperate need for devising fast, cheap and accurate 
tools via which the disease can be diagnosed in its early stage. 
Reverse Transcription Polymerase Chain Reaction (RTPCR) test 
is the mainstay tool used to detect the COVID19 symptoms. 
However, due to the high false-negative rate of this test, physicians 
employ chest radiographs as an adjunct or alternative tool. Despite 
the wide-availability, low-cost, and timely radiographs screening 
results, relying on radiologists to interpret them manually stands 
against using radiographs as a diagnostic tool. Motivated by the 
need to speed up the radiographic diagnosis of COVID19 and 
improves its reliability, this paper proposes a novel deep-learning-
based framework dubbed Parallel Deep Neural Networks for 
Covid-19 Diagnosis (PDNCD). PDNCD integrates the 
competency of convolution neural networks (CNNs) in treating 
medical images and the prowess of Recurrent Neural Networks 
(RNNs) in recognising clinicopathological characteristics to 
process radiographs and contextual resources simultaneously. By 
this integration, PDNCD can make perfect classifications even for 
those cases in which the infection signs in radiographs are unclear 
due to being the disease in early-stage, confounded by other 
markers or overlapped by other diseases. Extensive assessments of 
PDNCD carried out using several datasets demonstrate average 
diagnostic accuracy of 99.9 accuracies, 0.99 F1-score and near-
unity area under the receiver operating characteristic curve. 
Keywords: 
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1.  Introduction 
 

At the end of 2019, the Coronavirus (COVID-19) 
caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) surprised the world with its 
rapid spread and catastrophic impact. Within about a year 
since the appearance of the first case, the number of 
confirmed cases reaches 93 million, whereas the death toll 
exceeds 2 million [1]. This pandemic unified the scientists 

and researchers from all disciplines to curb the spread from 
all aspects. During the last few months, several institutions 
and pharmaceutical corporations claimed that safe and 
effective vaccines became available for the public [2]. 
However, the hope that the pandemic could be finally 
defeated has been jeopardised by the appearance of new 
mutant strains which are more transmissible [3] which 
might back the pandemic's fighting to square one; indeed, 
some nations face the second waves and reinforced curfew 
and lockdown[4]. This promotes the desperate needs for fast, 
cheap, and accurate tools to diagnose the disease in its early 
stage.  

The key challenge facing rapid diagnoses of 
COVID-19 is the vast and diverse symptoms presented on 
patients [5,6] whereas the majority of patients suffer from 
minor symptoms, (e.g., fever, cough, or tiredness) others 
might have more severe signs (e.g., loss of movement or 
shortness of breath) or even no symptoms at all. Hence most 
of the diagnoses techniques of COVID-19 concentrate on 
checking whether or not the antigens of this virus are 
presented in the respiratory of the suspected cases[5-7]. 
Reverse Transcriptase Polymerase Chain Reaction (RT-
PCR) is the standard test in diagnosing of COVID-19 
worldwide due to its ability to identify antigens of COVID-
19 [7-9]. RT-PCR requires to collect samples from nose or 
throat and then treats them chemically to isolate and then 
identify all known viral genetic variations of the disease. 
Besides, the long time required by the RT-PCR test to 
produce the results and the limited availability of its kits in 
some states; it also suffers from a high false-negative ratio 
(i.e., the situations in which the tests show that the suspected 
cases are healthy whereas they are infected). Specifically, 
several research groups estimate this rate as high as 61% 
[10,11] while other references show that the maximum 
accuracy of RT-PCR is about 0.8 and can only be obtained 
on or after the 8th day of symptom onset [10-12]. 

With the aim to overcome the critical limitations 
found in the RT-PCP test, chest radiographs are used as an 
adjunct or alternative diagnostic tool [13,14]. The 
invaluable information encoded in these images allows the 
physicians to monitor disease progression rather than 
determine the infectious status at a single time point as the 
case in RT-PCR. This makes them suitable for diagnosing 
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of disease as well as an assessment of its severity [13-17]. 
Some medical studies show that chest images of COVID-
19 patients share some common signs, such as lesions with 
ground-glass opacities (GGO), lung consolidation, bilateral 
patchy shadowing, pulmonary fibrosis, multiple lesions and 
crazy-paving pattern[18,19]. Interestingly, other works 
were able to infer the severity-degree of the disease from 
the medical images. For instance, [14-15] shows that during 
the early stage, the peripheral zone of lungs has multiple 
small patchy shadows and interstitial changes; while during 
the progression of diseases multiple Ground-Glass 
Opacities (GGO) and infiltration start to appear in both 
lungs and pulmonary consolidation is considered as a sign 
for a severe case. 

One of the key challenges that stand against 
adopting radiographs as a diagnostic test is the need to 
examine each image by a radiologist to decide whether the 
case is infected or not. Estimations for the time and 
accuracy of the manual examination as introduced in [20] 
show that a cardiothoracic fellowship-trained radiologist 
takes around a minute on the average to examine an X-ray 
image and that the average diagnostic accuracy is about 
78%. This is not negligible time, especially when 
considering that 30 Million tests weekly are required across 
the states to support the mitigation plan, and other14 
Million tests daily are needed as preventive measurements 
[6,21].  

Inspired by the ability of deep learning to automate 
the diagnosis of several diseases from their medical images 
e.g., arrhythmia, pneumonia, and fundus image 
segmentation [22,23]. Numerous models were developed to 
detect COVID-19 cases, e.g. [24-32]. Most of these models 
employ the Convolution Neuron Networks (CNN) 
architecture to extract the common visual hallmarks 
appearing on the radiograph of patients during the training 
phase, thereafter the model utilises its gained knowledge to 
judge new unseen cases. Although these models exhibit 
high diagnostic reliability; one of the common sources of 
their performance leakage is inattention of the contextual 
resources. Annotation, epidemiological history, ages, the 
clinical manifestation of patients or underlying 
comorbidities are some attributes that need to be considered 
when interpreting the radiographs. Several medical studies 
confirm that the images of patients with different attributes 
might have different radiographs' signs; for instance [33] 
shows that the image of COVID-19 pediatric patients has 
lower pulmonary lobes with higher bronchial wall 
thickening than adult patients. Whereas [34,35] reported 
that the image features of COVID-19 could not easily be 
distinguished in the presence of viral pneumonia, Severe 
acute respiratory syndrome (SARS) and/or Middle East 
Respiratory Syndrome (MERS) diseases. Furthermore, 
Other works report that some contextual factors  might 
confound the deep learning algorithms such as acquisition 

parameters, projection-type or even presence of tubes, 
catheters [36]. 

This paper attempts to overcome the 
aforementioned challenge by introducing a novel deep 
learning model dubbed Parallel Deep Neural Networks for 
Covid-19 Diagnosis (PDNCD). The underlying approach of 
PDNCD is to treat the images and their contextual resources 
simultaneously by running two deep learning networks in 
parallel. Firstly, a CNN, which is deep in spatial, is used to 
deal with images due to its competency in this domain. 
Secondly, a Recurrent Neural Network (RNN) [37] which 
is deep in time, is used to process images' contextual 
resources. Specifically, RNN has been chosen here due to 
its ability to consider the inputs' temporal dependencies. 
Hence changes spotted during the disease progression can 
be memorised in the network and used to make early 
prognostic for other cases. Another compelling reason for 
adopting RNNs in modelling contextual resources is being 
these networks are not confined to fixed-length inputs or 
outputs; thus, data of variable length can be treated 
concurrently. PDNCD is a two-stage architecture in which 
the first stage is used to build up the medical knowledge 
from processing contextual resources by RNN and visual 
features by the CNN to steer the focus in the second stage 
towards those signs that are significant to confide or dispel 
diagnostic suspicion. This focal is performed via another 
CNN and RNN layers whose parameters are tuned based on 
the previous layers' outputs with the aid of attention 
mechanisms [38]. Interestingly RNN layers built their 
knowledge from two sources: specific metadata associated 
with radiographs and more general COVID-19 corpus. 
Finally, PDNCD employs concatenate and fully connected 
layers to consolidate the knowledge gained from the two 
networks to classify the case either as positive or negative. 

According to the best of our knowledge, this is the 
first work considering using the radiographs' contextual 
resources to improve the detection capabilities of the 
COVID-19. In particular, the key contribution of this work 
can be summarised as: 

 
1- Develop a novel class of deep learning architecture in 

which medical text from both unstructured (corpus) 
and structural (metadata of radiographs) in conjunction 
with spatial information (encoded in radiographs) are 
processed in parallel to enhance detection capabilities 
of COVID-19. Besides the advantages of this model in 
rolling out differential diagnoses of this diseases, the 
proposed model paves the path towards building more 
sophisticated models that can be evolved over the time 
to accommodate updates, e.g., different mutant strains 
or new diagnosis findings.  

2- Reduce the time and computing resources required to 
train the deep learning model by incorporating the 
attention mechanism in CNN and RNN networks. 
Specifically, this mechanism achieves this goal by two 



IJCSNS International Journal of Computer Science and Network Security, VOL.26 No.1, January 2026 
 

 

87 

 

means; firstly expedite approaching the most 
informative partition of the case that is significant to 
make a clear diagnosis. Secondly, facilitates treating 
radiographs at their highest possible resolutions by 
avoiding use of an image preprocessing technique; 
hence fine details can be captured accurately. 

3- Present comprehensive assessments of the proposed 
model from different perspectives using several 
radiographs' datasets [24,26,31,38-50] in addition to a 
manifold of contextual resources including medical 
case study, scholarly articles, epidemiological models 
[51-58]. The results of this assessment demonstrate 
high capabilities of PDNCD in diagnosing COVID-19 
from radiographs with 99.9 accuracies,  0.99 F1-score 
and near-unity area under the receiver operating 
characteristic curve. 

 
The remaining of this paper is organised as follows in 
section II related works are explored, section 3 discusses the 
methods used to develop PDNCD and asses it. In section 4 
the dataset used for assessment of the proposed model in 
conjunction with results and discussion are presented, and 
finally, section 5 concludes this work.   

 
 

2.  Related works  
 

Since the appearance of COVID-19 scientists and 
researchers from artificial intelligence discipline have 
developed plenty of works and models to curb its outbreak. 
Here we aim to review some of these works with the aim to 
highlight approaches underpinned them and point out the 
merits of our model. 

COVIDX-Net[24] is amongst the earliest models 
introduced to provide rapid diagnoses for COVID19 from 
x-ray images by combining several pre-trained CNN 
networks with a binary classifier.  COVIDX-Net consists of 
seven models that are: VGG19, DenseNet201, InceptionV3, 
ResNetV2, InceptionResNetV2, Xception, and 
MobileNetV2 each of which is trained and tested 
individually. Evaluation of the model's performance was 
conducted over small dataset consisting of preprocessed 50 
X-Ray cases, half of them suffering from Covid-19 using 
80:20 training to the testing ratio. The key findings of this 
study demonstrate the capability of pre-trained models to 
extract the discriminative features of COVID-19 even over 
a smaller dataset. Furthermore, it is also shown that VGG19 
and DenseNet201 have the highest accuracy of 90% 
whereas the lowest achieved accuracy was 50% due to 
InceptionV3. Stimulated by the need to improve the 
diagnosis accuracy using small radiographic datasets, some 
models employ transfer learning to exploit the knowledge 
gained from examining individual cases in building a more 
sensitive classifier. The work in [25] proposed a three layers 
framework dubbed Decompose, Transfer, and Compose 

(DeTraC). DeTraC employs two widely used pre-trained 
CNN models: ImageNet and ResNet to extract the local 
features appearing in each image individually thereafter 
passed them to the decompose layer. The underlying 
approach of this layer is to amplify the irregularities of class 
boundaries by initiating a sub-class for each distinguished 
features found previously. The transfer layer with the aid of 
sophisticated gradient descent optimisation method devised 
by the authors retrains CNN model using these new sub-
classes. Finally,  the compose layer is used to assemble 
subclasses into a single binary class stating whether or not 
the case is infected with COVID-19.  DeTraC is evaluated 
using several datasets comprising 105 COVID-19, 11 
Severe acute respiratory syndromes and 80 normal samples 
and adopting 70:30 training to the testing ratio. This 
evaluation demonstrates that DeTraC can attend up to 
95.12% overall accuracy.  COVIDResNet [26] is another 
example of models aiming to improve the performance of 
pre-trained CNN architectures by introducing so-called 3-
step fine-tune techniques. The underlying concept of this 
technique is to resize the input radiographs progressively to 
different sizes and then adjust the learning parameters 
accordingly. According to the results reported in the 
original work, COVIDResNet is able to achieve 96.23% 
overall accuracy by employing ResNet-50 as a base 
network over unbalanced dataset consists of 45 COVID-19, 
1203 normal, 931 bacterial pneumonia and 660 viral 
pneumonia patients cases.  

The work proposed in [27] employs 11 pre-trained 
CNNs including AlexNet, GoogleNet, DenseNet, Inception, 
ResNet, VGG, XceptionNet, and InceptionResNet to 
extract the key features of the X-Ray images, thereafter pass 
them to a Support Vector Machine (SVM) which is used to 
generate the suitable class. The overall accuracy of 95.33% 
was achieved over balanced dataset consists of 127 
COVID-19, 127 pneumonia and 127 normal images that 
employ 60:20:20 training, validation and testing ratio.  

Generative Adversarial Networks (GAN) is a 
contemporary deep learning approach in which a new 
sample can be generated from the ground truth dataset. A 
GAN architecture comprises two models: a generator that is 
trained to generate new samples and discriminator that 
attempts to classify the sample as either ground truth or fake 
(produced by the generator network). Both models compete 
in a zero-sum game in which the generator endeavours to 
delude the discriminator about the originality of the sample. 
The key benefit of GAN in the domain of COVID-19 is to 
generate new samples from a small dataset; hence, the 
detectability of the model can be improved. The work 
presented in [28] employs the GAN approach alongside 
transfer learning and augmentation process to formulate a 
three-phase diagnosis architecture. In the first phase, both 
augmentation and GAN are used to generate new samples 
that are passed to the second phase in which 4 pre-trained 
models (i.e., AlexNet, GoogLeNet, Squeeznet, and 
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Resnet18) are used train the model, and finally, the third 
phase is used to test the model. The dataset used in this work 
consists of 5863 X-ray images of two classes, 10% of them 
are used for training and testing the model, whereas the 
remaining 90% are generated from the GAN. This work 
reports that Resnet19 has the highest accuracy of 99% 
compared to GoogLeNet, AlexNet, and Squeezed. The 
authors of [29] demonstrate GAN's ability to improve the 
CNN model's accuracy by more than 10% by introducing 
two networks. Firstly, a simple CNN constructed from 
several convolutional layers based on VGG16 architecture 
followed by the max-pooling and fully connected layers; the 
model is trained using a small dataset of 331 COVId-19 and 
601 normal cases and achieve 85% accuracy. The authors 
then incorporate this CNN with GAN architecture and allow 
it to generate 403 of COVID and 721 normal X-ray images; 
the assessment shows that 95% can be achieved due to this 
modification. Another work presented in [30] employs a 
GAN with three pre-trained models: Alexnet, Googlenet, 
and Restnet18 which are trained using two scenarios of 4 
and 3 classes of 307 image, including normal pneumonia 
bacterial, and pneumonia in additional to COVID-19. The 
results reported in their works exhibit the outperformance 
of Googlenet compared to other architectures under 
70:20;10 train:test: validation policy.  

Building diagnostic models from scratch is another 
technique that has been introduced in many works; COVID-

Net [31] was amongst the pioneer models that adopt this 
approach. COVID-Net exploits the Projection-Expansion-
Projection-eXtension (PEPX) structure of conventional 
CNN to stack up a large number of convolution layers that 
can capture meticulous details perfectly. Another crucial 
advantage of PEPX is its long-range connectivity, which 
facilities treating large datasets without needing massive 
computing resources. According to the results reported in 
this work, 93.3% accuracy level can be achieved over 
unbalanced, and dataset comprises 183 COVID-19 cases 
out of 13,800 total images. Additionally, these results show 
that the sensitivity of COVID-Net is higher than VGG-19 
and ResNet-50 by 32% and 8% respectively. COVID-
CAPS[32] is another bespoke model that exploits capsule 
networks' capability in recognising perturbations in the 
spatial relationships of images.  In COVID-CAPS each 
layer comprises several capsules, each of which uses its 
own neurons to capture the common features that are 
usually appeared in a specific partition of the image.  
COVID-CAPS then employs so-called protocol routing to 
determine whether or not the desired object is presented in 
the image. The results shown in this work demonstrate the 
ability of COVID-CAPS to achieve accuracy of 95.7% 
using a simple model consists of 4 convolutional and 3 
capsules layer without using pretraining. Table 1 
summarises some of key findings reported by the peer 
works. 

 
Table 1: Summary of some peer works 

Reference Number of cases Pre-processing Structure Post-processing  Performance metrics 
COVID-19 Other 

[24] 25 25 Rescaling 7pre-trained CNNs 
VGG19, ResNetV2, 
DenseNet201, 
InceptionV3,, 
InceptionResNetV2,Xce
ption, and MobileNetV2 

N/A Accuracy=90 
Precision =83 
F1-Score=91 

[25] 105 91 DA, Histogram, 
Feature Extraction 
using AlexNet, PCA, 
K-means 

2pre-trained CNNs: 
ImageNet and ResNet 

Composition Phase Accuracy =95.12 
Sensitivity =97.91 
Specificity =91.87 

[26] 45 2794 DA and 
Rescaling, 
Normalizing 

ResNet-50 N/A Accuracy =96.23 
Sensitivity =100 
Precision =100 
F1-Score=100 

[27] 127 254 N/A AlexNet, GoogleNet, 
DenseNet, Inception, 
ResNet, VGG, 
XceptionNet, and 
InceptionResNet  

N/A Accuracy =95.33 
Sensitivity =95.33 
F1-Score=95.34 

[28] 183 800 Data Augmentation CNN Explainabiliy-Driven 
Audit (GSInquire 
Method) 

Accuracy =93.3 
Sensitivity =91 

[29] - - N/A Capsule Layer N/A Accuracy =95.7 
Sensitivity =90 
Specificity =95.8 

[30] 58.63 5863 N/A AlexNet, GoogLeNet, 
Squeeznet, and 
Resnet18+ GAN 

N/A 
N/A 

Accuracy =99 
Precision =98.97 
F1-Score=98.97  
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It can be seen from the above discussion that most 
of the works presented in the open literature rely on CNN 
networks to spot the COVID-19 infection signs presented in 
radiographs. In contrast, this work proposes a novel deep 
learning model in which both image and both unstructured 
and structured contextual resources are processing 
simultaneously. The proposed model employs RNN in 
parallel with CNN and adopts attraction mechanisms to 
steer focus dynamically towards those portions of datasets 
that are significant in making differential diagnoses. 
According to the best of our knowledge, this is the first 
work that employs these architectures and techniques to 
fight  COVID-19 outbreak. 

 

3.  Methods 

The key contribution of this work is to introduce a 
novel class of deep learning architecture in which 
contextual resources are utilised in conjunction with the 
radiographs images to improve diagnostic reliability of 
COVID-19. Subsection 3.1 is devoted to discussing the 
method used to develop our proposal where the assessment 
methods are presented in subsection 3.2.  

3.1 The proposed model 

The proposed model is dubbed Parallel Deep Neural 
Networks for Covid-19 Diagnosis (PDNCD) and utilises 
the deep neuron networks[37] due to their competency in 
representing a multifaceted system with a high level of 
accuracy. The building block of these networks is the 
artificial neuron that was devised to mimic the Biological 
neuron found in the mammals' nervous system. Typically, 
each neuron comprises an activation function that maps a 
given input into the corresponding output by adjusting two 
learnable parameters: weight and bias. Arranging neurons 
in different layers and cascading them facilitates expressing 
a dynamic system as a set of parameters projected over 
predefined spaces which is known as universal 
approximation theorem [37-59]. PDNCD concentrates two 
types of neuron networks: Convolution Neuron networks 
(CNN) and Recurrent Neuron Networks (RNN). CNN is 
used to treat images dataset due to its ability to recognise 
the spatial relationships amongst the samples whereas RNN 
is used in the domain of natural language processing due to 
its ability to consider the time-evolving of dynamic systems. 
Figure 1 illustrates the block diagram of PDNCD. 

 

 
 

Figure 1 Block diagram of PDNCD 
 

 As it can be seen in figure 1 that PDNCD consists of 
two stages, each of which comprises a CNN and RNN that 
are running in parallel to process images and textual 

resources simultaneously. The main aim of the first stage is 
to construe visual signs spotted in radiographs in relation to 
descriptions reported in the associated metadata. Thus, the 
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model can acquire correlations between visual signs and 
their metadata, which constitutes the medical knowledge 
required in the subsequent stage.  

The CNN of the first stage comprises the following 
layers: convolutional, non-linearity, pooling, and flatten. 
The main functionality of the convolutional layer is to 
extract features exhibited in the images by applying a filter 
with square Kernal across them. Here twelve kernels with 
two differnt sizes of 3 × 3 and 5 × 5 whose values follow a 
normal distribution with zero means and unity standard 
deviation are used for the foremost deeper layer, 
respectively. The reason behind using larger kernels for 
deeper layers is that in these layers there is a need to capture 
closer details by removing the noises at a finer scale.  The 
non-linearity layer is the second important layer that is used 
to amplify the differences found in the output of the 
convolutional layer (also known as feature map) by passing 
them into a non-linear activation function (e.g., hyperbolic 
tangent tanh or rectified linear unit, ReLU); here we use 
tanh since it can squash the input into a smaller range[−1,1] 
whereas compared to a much wider range of ReLU which 
whose rang is [0, ∞] . It is worth noting that, the non-
linearity layer does not change the size of the feature maps, 
rather it prepares them to be ready for further feature 
extractions by the pooling layer. Fundamentally, pooling 
layer aims to downsize feature map processed by the non-
linearity layer by aggregating a feature represented in 
several pixels into low dimension pixels. While different 
operations can be used to achieve such aggregation such as 
max, min or average pooling layer, this stage of PDNCD 
employs the maximum pool due to its ability to manifest 
lighter pixels out of a darker background. Finally, The 
flatten layer is used to reduce the two-dimensional vectors 
of spatial features found in the images into a single-
dimension to facilitate further processing. 

The RNN network of the first stage, as shown in 
figure 1, consists of two layers: embedding and 
Bidirectional Gated Recurrent Unit (BGRU). The 
embedding layer is used to convert the metadata into 
numerical form so that the neuron networks can process it. 
This layer employers one hot encoder to express a word into 
a binary vector of dummy features and then apply the 
dimension reduction algorithm to minimise the number of 
these dummy features considering logical interpretation and 
semantic structure. The BGRU is constructed from two 
GRUs running side-by-side, the first GRU goes with the 
forward time directions while the second goes in the reverse 
direction. By processing the data in both directions, the 
model can foster its understating for diseases progression 
without a need to make a chronological order for the data. 

The final components of the first stage network 
are: concatenate and fully connected layers. The 
concatenate layer is used to connect the outcomes of the 
upstreaming layers together so that they can be processed 
jointly by the subsequent layers despite their different 

lengths. In this stage, the inputs of the concatenate layer are 
the visual and textual features extracted from the 
radiographs and their metadata by the CNN and RNN 
respectively whereas the output of the concatenate layer is 
a single dimension tensor of their features.  Finally, the fully 
connected layer is a simple network in which each neuron 
is connected to all neurons in the next layer; hence this 
topology allows each neuron to consider the information 
gathered in the previous layer which in turn consolidate the 
learning and expedite the convergence of the model to the 
desired outcomes. 

The architecture of the second stage of the PDNCD 
as shown in figure 1 is identical to the first stage except that 
two attention layers are added in front of CNN and RNN 
networks and that COVID-19's corpus is used as a dataset 
for the RNN network instead of the radiographs' metadata. 
These changes are made to enable PDNCD to exploit the 
medical knowledge gained in the first stage to focus on 
those signs that are significant to confide or dispel a 
diagnostic suspicion. Thus, PDNCD can make perfect 
classifications even for cases where the infection signs are 
unclear due to being the disease in early-stage, confounded 
by other markers or overlapped by other diseases. The 
attention layers are fully connected networks whose inputs 
are the outputs of the first stage and whose outputs are the 
weights of convolutional and embedding layers of the RNN 
or CNN, respectively. By this arrangement, CNN can 
extract the more relevant features to the case and RNN can 
find out the pieces of information that are similar to the case 
under investigation. 
 
3.2 Assessment methodology  

Assessment for the accuracy of the proposed model 
is carried out here by comparing its outcomes with respect 
to the ground truth data obtained from the dataset. This 
assessment uses the following statistical measurements: 
accuracy, precision, recall, F1-score, Receiver Operating 
Characteristic (ROC) and Area Under ROC Curve (AUC). 
The definitions of these metrics are given with the aid of the 
following terms: True Positive (TP), False Positive (FP), 
True Negative (TN) and finally False Negative (FN). The 
TP counts the cases classified by both our proposed model 
and clinically as patients and TN are the numbers of cases 
classified by both the model and clinically as healthy. 
Conversely, FN and (FT) signifies the number of cases that 
are classified by our model as patients (healthy) whereas 
clinicians diagnosed them as (healthy) infected. 

The accuracy is defined as the ratio of the cases that 
both models' predictions and physician's diagnoses are 
agreed with respect to the total cases seen by the model, 
which can be expressed mathematically as: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 
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The accuracy metric quantifies the overall 
effectiveness of a classifier as a function of its ability to 
make true predictions whether they are positive or negative 
cases. In the domain of COVID-19, it is highly desired to 
assess the ability of the model in identifying positive cases 
so that patients can be isolated to limit further spreading. To 
address this requirement, precision and recall are used in 
which the true positive is weighed with respect to other 
measurements. To be more specific, the precision is a ratio 
of those cases classified by the model as true in agreement 
with physician diagnoses to the sum of the positive class 
predicted by the model either in agreement or disagreement 
with physicians. Whereas the recall has the same numerator 
of precision, its denominator comprises the false-negative 
instead of false-positive as the case in the precision. 
Expressions for accuracy and precision are given in 
equations (2) and (3), respectively. 

  

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 
F1-score is a composed metric that is defined as the 

harmonic mean of precision and recall, i.e.,   
 

F1 − score =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 
Equation (4) shows that the maximum value of the F1-score 
is achieved if both precision and recall are unity, which 
occurs when both false negative and false positive are zeros. 
This makes F1-score important when considering 
unbalanced dataset, i.e., the dataset of which the number of 
cases of one class is higher than the number of cases 
belonging to the second class. 

Receiver Operating Characteristic (ROC) is a bi-
dimensional graph that expresses the recall, which also 
known as True Positive Rate (TPR) in terms of False 
Positive Rate (FPR) which are defined. 

 

𝐹𝑅𝑃 =
𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
 (5) 

 
ROC's importance emerges from its ability to 

visualize to what extent the diagnostician differs from 
random classifier at various threshold settings; hence, two 
or more models can be compared readily. Finally, the Area 
Under ROC Curve (AUC) as its name implies, is a 
measurement for the total area under ROC which ranging 
from zero to 1. 

 

4.  Results and Discussion 

This section provides descriptions for the dataset 
used for the training and testing phases in subsection 4.1 
and the results and discussion in subsection 4.2.   

4.1 Datasets 
With the aim to assess the accuracy of the proposed 

model from different perspectives, this work utilises several 
datasets collected from [24,26,31,38-50]. The total number 
of COVID-19 confirmed, and negative cases used for the 
training and testing phases are 10,000 and 15,000, 
respectively. All collected images are combined with 
randomly ordered and then divided into two mutually 
exclusive groups along with their metadata: confirmed and 
COVID-19 negative which are denoted in figure 1 by 
COVID-19 (+ve) and COVID-19 (-ve) respectively. The 
former group comprises images of cases, who do not suffer 
from COVID-19 even if they have other lung diseases; 
whereas the latter group contains all cases diagnosed as 
covid-19 patients. The references and repositories used to 
build contextual resources are 500 case reports from [51-
53], 8458 scholarly articles from [54-56] and radiograph 
annotations from epidemiological models [57-58]. All 
textual sources are kept in their original formats without a 
further modification or explanation, whereas the unified 
medical language system is used as referenceable 
vocabularies for the embedding layer of RNN. Figure 2 
illustrates a sample of case studies reported by [60] showing 
how the visual signs are changed during the progression of 
COVID-19.  

The datasets are divided randomly into 80% used 
for training the model and the remaining 20% for the testing 
purpose; this division was repeated 10 times to form 10-fold 
cross-validations.  Table 2 summarises the key parameters 
used to conduct the training and testing phases.  

 
Table 2: Summary of key parameters used to train and test  

Parameter Value 
Programming 
Language  

Python 3.8 with Tensorflow library. 

Environment  Ubuntu machine with Intel(R) Core 
i9-9900X CPU @ 3.50GHz, 62GB 
memory and a GeForce RTX 2060 
GPU. 

optimiser Adam optimiser 
momentum 𝛽ଵ = 0.995 and 𝛽ଶ = 0.99 
epoch 50  
Batch size 32 
learning rate 0.0001 
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Figure 1 Changes in the visual sings with progression of COVID-19,  (a) is taken on the 5th illness day shows peripheral ground-glass 
opacities in the left lower zone and (b) which is taken 2 days later shows an increase in the diffusely of the ground-glass opacities.  Whereas 
in (c) which is obtained on the 11th day illustrates a further increase and consolidation in the opacities of the left lung with the extension 
of these opacities to the right lung. On the 14th day of the onset, as shown in (d) shows an enlargement of the reticulations in both lungs 
with the extension in the right upper zone. the figure (e) which is corresponding to the 17th day depicts intensive bidirectional consolidations 
and finally (f) shows extensive consolidation in both lungs. Adopted from [60] . 
 
4.2 Results and Discussion 

Table 2 summarises readings obtained from 
assessment the proposed model using the predefined 
performance metrics. The first column of this table 
references the source from which the dataset was obtained, 
whereas the second column presents the aspect ratio which 
is defined as the percentage of the COVID-19 images to the 
total images reported in the dataset multiplying by the 

number of categories of these images. A dataset is 
considered perfectly balanced if this ratio is one. It is worth 
noting that the model is trained over the whole datasets from 
all references; hence, this aspect ratio reflects the 
percentage used to do the test.  The remaining columns give 
the average readings recorded from all the 10 folds 
conducting on each dataset.

 
Table 2. Performance readings of our proposal protocol for different datasets 

Reference of 
dataset 

Aspect 
ratio 

Accuracy Precision Recall 𝐹ଵ AUC 

[24] 0.98 0.98 ± 1.0 × 10ିସ 0.93 ± 3.6 × 10ିଷ 0.93 ± 3.6 × 10ିଷ 0.96 ± 4.7 × 10ିସ 0.99 ± 3.5 × 10ିହ 
[26] 0.95 0.95 ± 1.4 × 10ିହ 0.95 ± 5.4 × 10ିସ 0.99 ± 3.5 × 10ିହ 0.96 ± 1.4 × 10ିହ 0.99 ± 1.4 × 10ିହ 
[31] 2.28 0.97 ± 1.5 × 10ି଺ 0.97 ± 2.3 × 10ିସ 0.99 ± 1.4 × 10ିହ 0.93 ± 3.6 × 10ିଷ 0.99 ± 3.5 × 10ିହ 
[38] 3.20 0.93 ± 1.9 × 10ିହ 0.99 ± 3.5 × 10ିହ 0.95 ± 5.4 × 10ିସ 0.95 ± 5.4 × 10ିସ 0.98 ± 3.6 × 10ିଷ 
[39] 0.98 0.96 ± 1.3 × 10ିହ 0.94 ± 2.7 × 10ିହ 0.99 ± 3.5 × 10ିହ 0.97 ± 1.7 × 10ିହ 0.99 ± 2.6 × 10ି଺ 
[40] 0.58 0.96 ± 1.4 × 10ିହ 0.96 ± 4.7 × 10ିସ 0.96 ± 4.7 × 10ିସ 0.93 ± 3.6 × 10ିଷ 0.99 ± 3.5 × 10ିହ 
[41] 1.00 0.97 ± 1.5 × 10ିହ 0.94 ± 4.6 × 10ି଺ 0.93 ± 3.6 × 10ିଷ 0.99 ± 1.3 × 10ିହ 0.99 ± 5.4 × 10ିସ 
[42] 1.20 0.99 ± 1.3 × 10ିହ 0.97 ± 1.7 × 10ିହ 0.99 ± 3.5 × 10ିହ 0.95 ± 5.4 × 10ିସ 0.99 ± 1.7 × 10ିହ 
[43] 0.98 0.96 ± 1.2 × 10ିହ 0.95 ± 7.1 × 10ି଺ 0.98 ± 1.4 × 10ିହ 0.93 ± 3.6 × 10ିଷ 0.99 ± 3.5 × 10ିହ 
[44] 1.02 0.95 ± 1.2 × 10ିହ 0.99 ± 2.6 × 10ି଺ 0.95 ± 5.4 × 10ିସ 0.97 ± 1.7 × 10ିହ 0.99 ± 2.6 × 10ି଺ 
[45] 1.90 0.98 ± 1.1 × 10ିହ 0.99 ± 3.6 × 10ିହ 0.97 ± 1.4 × 10ିହ 0.96 ± 4.7 × 10ିସ 0.93 ± 3.6 × 10ିଷ 
[46] 4.28 0.94 ± 1.0 × 10ିହ 0.98 ± 4.6 × 10ି଺ 0.99 ± 3.5 × 10ିହ 0.99 ± 2.6 × 10ି଺ 0.99 ± 1.3 × 10ିହ 
[47] 2.50 0.98 ± 1.5 × 10ିହ 0.99 ± 8.6 × 10ି଻ 0.97 ± 1.4 × 10ିହ 0.97 ± 1.7 × 10ିହ 0.99 ± 5.4 × 10ିସ 
[48] 0.12 0.98 ± 1.4 × 10ିହ 0.99 ± 5.4 × 10ି଻ 0.93 ± 3.6 × 10ିଷ 0.96 ± 4.7 × 10ିସ 0.99 ± 3.5 × 10ିହ 
[49] 0.98 0.95 ± 1.2 × 10ିହ 0.99 ± 2.6 × 10ି଺ 0.99 ± 3.5 × 10ିହ 0.97 ± 1.7 × 10ିହ 0.98 ± 3.6 × 10ିଷ 
[50] 0.14 0.99 ± 3.5 × 10ିହ 0.95 ± 5.4 × 10ିସ 0.93 ± 3.6 × 10ିଷ 0.99 ± 1.3 × 10ିହ 0.99 ± 5.4 × 10ିସ 
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A further assessment for our proposal was 
conducted by comparing the advantage of parallel 
architecture; two versions of the proposed models were 
used. Firstly, the PDNCD architecture presented in figure 1 
and a modified version of PDNCD in which all RNN 

networks are removed thus PDNCD was converted to a 
cascading of CNN networks as the case with other peer 
works dubbed SDNCD. Comparisons between ROC's of 
SDNCD and PDNCD for 16 datasets are illustrated in figure 
2. 

    

    
(a) ROC of dataset [24] 

 
(b) ROC of dataset [26] (c) ROC of dataset [31] (d) ROC of dataset [38] 

    
(e) ROC of dataset [39] 

 
(f) ROC of dataset [40] (g) ROC of dataset [41] (h) ROC of dataset [42] 

    
(i) ROC of dataset [43] (j) ROC of dataset [44] 

 
(k) ROC of dataset [45] (l) ROC of dataset [46] 

    
(m) ROC of dataset [47] (n) ROC of dataset [48] (o) ROC of dataset [49] (p) ROC of dataset [50] 

 
Figure 2. ROC of the dataset 

 
As can be seen from the assessment results that the 

proposed model, PDNCD,  exhibits outstanding 
performance over all datasets. This is attributed mainly to 
the capability of the parallel architecture to exploit the 
knowledge gained from both radiographs and contextual 
resources to improve diagnosis of COVID-19. Another 
compelling reason for this outperformance is using the 
attention mechanism in the second stage. This mechanism 

eliminates a need to employ an image-processing technique 
which in turn enables PDNCD to extract fine details 
accurately. It can be seen from table 2 that the aspect ratio 
has a minor effect of the total performance metrics which is 
attributed to the ability of  PDNCD to make perfect 
classifications even for cases where the infection signs are 
unclear due to being the disease in early-stage, confounded 
by other markers or overlapped by other diseases. Hence, 
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CNN can extract the more relevant features to the case and 
RNN can find out the pieces of information that are similar 
to the case under investigation despite the size of the sample 
fed into the model. Figure 2 shows that removing the 
parallel architecture from PDNCD can degrade the 
performance of the classification significantly. Since 
inattention of the contextual resources yields a week model 
that depends on spotting the visual signs that might be 
overlapped by other markers. 

  
 

5. Conclusion  

This paper proposed a novel deep learning model 
dubbed Parallel Deep Neural Networks for Covid-19 
Diagnosis (PDNCD) whose underlying approach is to treat 
the images and their contextual resources simultaneously by 
running two CNN and RNN networks in parallel. PDNCD 
is a two-stage architecture in which the first stage is used to 
build up the medical knowledge from processing contextual 
resources by RNN and visual features by the CNN to steer 
the focus in the second stage towards those signs that are 
significant to confide or dispel diagnostic suspicion. This 
focal is performed via another CNN and RNN layers whose 
parameters are tuned based on the previous layers' outputs 
with the aid of attention mechanisms. According to the best 
of our knowledge, this is the first work considering using 
the radiographs' contextual resources to improve the 
detection capabilities of the COVID-19. Comprehensive 
assessments of the proposed model from different 
perspectives demonstrate the high capabilities of PDNCD 
in diagnosing COVID-19.  
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