102 IJCSNS International Journal of Computer Science and Network Security, VOL.26 No.1, January 2026

A Lightweight Static Data Race Checker for OpenMP Software

Hend Alshede

King Saud University
Riyadh, Saudi Arabia

Abstract

OpenMP has become one of the most widely adopted interfaces
for parallel programming, particularly for managing shared-
memory parallelism on multi-core architectures. With the
increasing prevalence of multi-core systems, a large body of
sequential software has been parallelized using OpenMP.
However, writing correct parallel programs remains challenging,
and concurrency errors such as data races and deadlocks are
common. This paper presents the design and conceptual
evaluation of a lightweight static data race checker for OpenMP
programs. The proposed approach relies on lexical, syntactic, and
semantic analysis performed at compile time, without requiring
runtime instrumentation. By focusing on simplicity and early error
detection, the checker aims to provide programmers with fast and
useful feedback about potential data races. Compared to dynamic
approaches, the proposed method can identify likely race
conditions earlier in the development process with lower analysis
overhead.

Keywords:

OpenMP; data race detection; Parallel programming; High-
Performance Computing; Static analysis.

1. Introduction

High-Performance Computing (HPC) has
become essential in many scientific, engineering, and
industrial domains. The rapid development of
powerful computing platforms has made large-scale
parallel systems increasingly accessible, and exascale
computing is expected to become feasible soon [1].
Consequently, the importance of efficient parallel
software development continues to grow. Despite
advances in hardware, developing correct and efficient
parallel software remains difficult. Traditional
programming languages provide limited native
support for parallelism, which has led to the adoption
of programming models that enable parallel execution.
Programming models define a set of abstractions,
operations, and execution rules that facilitate parallel

Manuscript received January 5, 2026
Manuscript revised January 20, 2026

https://doi.org/10.22937 /IJCSNS.2026.26.1.13

computation [2]. Among the most widely used models
are Message Passing Interface (MPI) for distributed
memory systems and OpenMP for shared-memory
parallelism [3]. In addition, modern programming
models increasingly support heterogeneous systems,
including accelerators such as GPUs [4].

OpenMP is a standard programming model
designed for shared-memory parallel programming in
C, C++, and Fortran. Since its first release in 1997,
OpenMP has evolved significantly, with version 5.0
introducing enhanced support for complex
architectures and execution environments [5].
OpenMP offers portability, scalability, and ease of use,
allowing programmers to incrementally parallelize
existing code.

However, OpenMP does not inherently
prevent concurrency errors. In particular, data races
remain a major source of incorrect behavior in parallel
programs. Ensuring race-free execution is largely the
programmer’s responsibility, which increases the
likelihood of subtle and hard-to-debug errors in HPC
applications.

Although several static and dynamic tools
have been proposed to detect data races in OpenMP
programs, many existing approaches either rely on
runtime instrumentation or involve complex analysis
frameworks that increase overhead. This paper
addresses this gap by proposing a lightweight static
data race detection approach that focuses on early
error identification at compile time. The proposed
method emphasizes simplicity and conceptual clarity,
making it suitable as a design foundation for practical
static analysis tools.

The remainder of this paper is organized as
follows. Section 2 provides background on OpenMP
and data races. Section 3 reviews related work.
Section 4 presents the design of the proposed static
data race checker. Section 5 provides a conceptual

IJCSNS International Journal of Computer Science and Network Security, VOL.26 No.1, January 2026 103

comparative study. Finally, Section 6 concludes the
paper and outlines future work.

2. Background

OpenMP is commonly used in shared-memory
multiprocessing systems, where all threads access a
common memory space. Each thread executes the
same program independently and may progress at
different execution stages, in contrast to the Single
Instruction Multiple Data (SIMD) execution model.
Synchronization in OpenMP is achieved through
constructs such as barriers, critical sections, atomic
operations, and locks.

Although OpenMP provides several
synchronization mechanisms, correct usage remains
the programmer’s responsibility. A data race occurs
when two or more threads access the same memory
location concurrently and at least one of the accesses
is a write operation. Data races often arise in parallel
loops, where different iterations execute
simultaneously and access shared data. Figure 1
illustrates a simple example of a data race in an
OpenMP parallel loop. In this example, multiple
threads access overlapping memory locations, leading
to undefined program behavior. Such errors are
difficult to detect through testing alone, especially in
large-scale HPC applications.

Testing Technigues

Static (Verification) Dynamic (Validation)

Figure 1. Categories of testing techniques.

Software testing techniques can be broadly
classified into static and dynamic approaches. Static
testing is performed at compile time without executing
the program and aims to identify defects early in the
development process. In contrast, dynamic testing
involves executing the program with specific inputs
and analyzing runtime behavior. While dynamic
techniques can provide precise information, they often

incur significant runtime overhead and may fail to
cover all execution paths.

3. Related work

Numerous approaches have been proposed to
detect data races in OpenMP and parallel programs.
Atzeni et al. [6] introduced Archer, a hybrid approach
combining static and dynamic analysis. Archer
classifies program regions as race-free, certainly racy,
or potentially racy, and applies runtime analysis only
to ambiguous regions. Although effective, this
approach still relies on runtime instrumentation.
Figure 2 illustrates Archer architecture.

OpenMP C/C++ C LLVM Compiler
A LY niy Instrumented

Intel OpenM P

Ene | Runtime
Static grained R g
Analysis blackist
information
| LWMIR {Tﬁ
Code Instramentation [

Reports

QpenMP
Spurce
Code

Figure 2. Archer architecture.

The input in their module is a source code
file of an OpenMP program. The output is a report of
the possible data race part. They called their module
"Archer". Archer used a set of static techniques to
determine the categories of code as one of three:
race-free regions, certainly racy regions, and
potentially racy regions. Figure 3a shows a simple
OpenMP code where the Archer will determine it as
race-free, while Figure 3b shows certainly racy
regions. The dynamic analyzer is used to detect
potentially risky regions and to check the code at
runtime for a more accurate diagnosis.

104 IJCSNS International Journal of Computer Science and Network Security, VOL.26 No.1, January 2026

LLOV has two main steps: analysis, then

#pragn;g o }iara‘l;el f‘t?r’) ﬁpraqm'al P Iiarafl;el f_t?r _ verification.
for‘\l,nt : _‘0' Lkt for(l‘nt b _,D' Ll 1) Analysis step. It collects different OpenMP
afi] = all] - I ali] = alt + 1];

} }

Figure 3. OpenMP parallel for loop.

On the other hand, Swain, B., and Huang, J., in

[7] (2018), presented an incremental approach for

checking data races in OpenMP. Their proposed

approach was static analysis and consisted of two
steps:

(1): Array Index checking step used to check if two
arrays made from different processors may
access the same location in memory.

(i1): An Incremental Graph step used to determine the
possibility of overlapping occurring concurrently
by building a May Happen in Parallel (MHP)
graph.

The result has shown that the first part, which
is array index analysis on its own, is very useful for
checking data races. The second part, a graph step,
kept the runtime low through incremental updates.

As well as in [8] (2020), BORA, U et al., proposed the
LLOV module. It was a static approach to check data
race for OpenMP programs. It was built using the
framework of the LLVM compiler. Attract as a fast,
lightweight, language-agnostic When
comparing LLOV with other existing data race
checkers, the result shows that LLOV provides the
same percentage of precision and accuracy while being
faster. LLOV can verify a C++ or FORTRAN code
only. The architecture of LLOV is shown in Figure 4

below.
Collect Alias
> OpenMP ~ | Analysis
[information |
v

OpenMP Source LLVM-TR Verifier Data Race
C/CH+/FORTRAN (loadable module) Warnings

module.

Polly

LLOV : LLVM OpenMP Verifier

Figure 4. The architecture of LLOV.

pragmas and other information needed for race
checking. The importance of this step is to
constructs are lowered. LLVM-IR is sequential
and does not have support for parallel
constructions.

2) Verification step. LLOV checks the regions for

data races only marked parallel by one of the
structured parallelism. A crucial property of
OpenMP constructs is that its specification
allows only structured blocks within a pragma.
A structured block must not contain arbitrary
jumps into or out of it. In other words, a
structured block closely resembles a Single-
Entry Single Exit (SESE) region used in loop
analyses.

At the end of this section, Table 1 summarizes the
four reviewed papers, while Table 2 compares their
approaches based on the main attributes.

Table 1. Summary of related work

Study Year Summary Notes

Reviewed Note

Atzeni, S | 2013 Static and | Archer

et.al. in [6] dynamic module.
approach

Swain, B., | 2018 Static Increme

and approach ntal

Huang, J module

in [7]

BORA, ,U | 2020 Static LLOV

et.al,[8] approach module

Table 2. Related work comparative study

Study Reviewed | Accuracy | Complexity Time
Atzeni, S et.al. High High Fast
in [6] (2013),

Swain, B., and High High Fast
Huang, J in [7]

(2018),

BORA, ,U et.al, High High Very Fast
(8]

2020

IJCSNS International Journal of Computer Science and Network Security, VOL.26 No.1, January 2026 105

4. Static data race checker

The proposed static data race checker analyzes

OpenMP programs written in C++ at compile time. Figure
5 illustrates the overall architecture of the proposed tool.

Token)
Table
OpenMP Correct List of
source Syntax > Errors
Code/C++

Figure 5. The architecture of a static data race checker.

The analysis process consists of three main stages:

1.

Lexical Analysis:

The input source code is scanned and transformed
into a sequence of tokens. Comments and
whitespace are removed, and relevant lexical
elements are identified.

Parsing Analysis:

The parser validates the token stream against the
grammar rules of the language and constructs a
structured representation of the program.

Semantic Analysis:

The semantic analyzer examines program
constructs to identify parallel regions and loop
structures. Shared memory accesses within
parallel loops are analyzed to detect potential data
race conditions.

When a potential data race is detected, the tool

reports the corresponding source code location. If no

race conditions are found, the program is reported as
race-free within the analyzed scope.

The flowchart that represents the algorithm to
detect the data race error inside openMP program is
represented in the following Figure 6.

p Yes
Check the Print line

RS foop? {—\ 4 depende ‘ g number

Yes

NO
Execute Normally ‘7 °
| preme—
| |

Figure 6. The Flowchart algorithm for the data race checker.

The proposed pseudo-code outlines the
conceptual logic used to track memory accesses and
identify conflicting read/write operations in parallel
regions.

Var G_address
Int Flage Error =0
while (# progrma openmp parallel)
{Scan (for)?
If write, then
G _address = current address
If (read or write) and address =
G _address, then
Data race error in # line
Flage Error =1
End if
G_address=0
End if
}
If Flage Error =0 then
No data race
End if
End

5. Comparative Study

Data race detection tools can be evaluated based on
complexity, analysis time, and accuracy. Dynamic
approaches typically provide high accuracy but incur
significant runtime overhead. Hybrid approaches reduce
overhead but increase system complexity. Static approaches,

106 IJCSNS International Journal of Computer Science and Network Security, VOL.26 No.1, January 2026

while potentially conservative, offer faster analysis and
early feedback. The proposed checker adopts a static
approach to balance simplicity and efficiency. Rather than
competing with advanced compiler-level tools, the design
serves as a lightweight alternative that can complement
existing methods or act as a foundation for further
development.

6. Conclusion

OpenMP has become a standard choice for parallel
programming on shared-memory systems, but data races
remain a significant challenge. This paper presented the
design and conceptual evaluation of a lightweight static data
race checker for OpenMP programs. By performing
analysis at compile time and avoiding runtime
instrumentation, the proposed approach can provide early
feedback to developers with minimal overhead. Future
work will focus on implementing the proposed checker,
extending its analysis to support additional OpenMP
constructs, and evaluating its effectiveness using standard
benchmark suites such as the NAS Parallel Benchmarks.

References

[1] Alghamdi, A and Eassa, F " Software Testing
Techniques for Parallel Systems: A Survey ", JICSNS
International Journal of Computer Science and
Network Security,2019.

[2] Jianjiang, L et al.," Analysis of Factors Affecting
Execution Performance of OpenMP Programs ",
TSINGHUA SCIENCE AND TECHNOLOGY, ISSN
1007-0214 05/21 pp304-308Volume 10, Number 3,

June 2005.

[3] Ma, H et al, " Symbolic Analysis of Concurrency
Errors in OpenMP Programs", 42nd International
Conference on Parallel Processing, 2013.

[4] Kirk, D., and Hwu, W., Programming Massively
Parallel Processors, Morgan Kaufmann, 2016.

[5] OpenMP Architecture Review Board, OpenMP
Application Programming Interface Version 5.0, 2018.

[6] Atzeni, S et al., " Archer: A Low Overhead Data Race
Detector for OpenMP", School of Computing —
University of Utah, 2013.

[7] Swain, B and Huang, J," Towards Incremental Static
Race Detection in OpenMP Programs", IEEE/ACM

2nd International Workshop on Software Correctness
for HPC Applications (Correctness), 2018.

[8] BORA, U et al.,, " LLOV: A Fast Static Data-Race
Checker for OpenMP Programs", ACM Transactions
on Architecture and Code Optimization, Vol. 17, No. 4,
Article 35. Publication date: November 2020.

[9] Anwar, N and Kar, S " Review Paper on Various
Software Testing Techniques & Strategies ", Double
Blind Peer-Reviewed International Research Journal,
Vol. 19, 2019.

Hend Alshede was born in Riyadh, Saudi Arabia. She
received the B.Sc. degree in computer science and
education from Princess Nora Bint Abdulrahman
University, Riyadh, Saudi Arabia, in 2007, the M.Sc. degree
in sciences in computer science from King Saud University,
Riyadh, Saudi Arabia, in 2013, and PhD degree in computer
science from King Abdulaziz University, Jeddah, Saudi
Arabia, in 2025. She is currently working as an Assistant
Professor at King Saud University. His research interests
include network security, Internet of Things, cybersecurity,
smart grid, machine learning, and deep learning.

