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Summary 
Machine learning approaches use a variety of features such as 
opcodes, bytecodes, and system-calls to achieve accurate malware 
detection. Each of these feature sets provides a unique semantic 
view, while, considering the effect of all together is more reliable 
to detect attacks. A malware can disguise itself in some views, but 
disguising in all views will be much more difficult. By this 
motivation, multi-view learning (MVL) considers multiple views 
of a problem to improve the overall performance. In this paper, 
two approaches are proposed to incorporate some various feature 
sets and exploit complementary information to identify the 
category of a file. To alleviate the complexity of the problem 
sparse representation is employed to make the base classifier. Then, 
two ways are introduced to combine the effect of multi-view. At 
first, the consensus of multiple views are used to minimize the 
overall error of a classifier and as the second, some independent 
classifiers are learned and weighted voting is used for the final 
decision. To show the generalization power of the proposed 
method, several datasets are investigated. Experimental results 
indicate that in addition to simplicity and high performance, 
regarding the selected base classifier, the proposed methods are 
able to handle imbalanced datasets. 
Keywords: 
multi-view learning, sparse representation, ensemble learning, 
malware identification. 

1. Introduction 

Malware stands for Malicious Software, which is a 
program designed for malicious purposes [1]. They include 
families such as virus, worm, Trojan, backdoor, rootkit, 
DoS, and exploit. As the complexity and concealment tricks 
of malware are improved progressively, employing the 
machine learning findings can improve the model 
performance against zero-day attacks [2]. Considering 
some distinct attributes of data helps to combine several 
aspects of information that may bring performance 
improvement. This led to propose a new approach in 
machine learning named multi-view learning (MVL) [3]. 
For example in image processing, color and texture 
information are two different features, which can be 
regarded as two-views data. As well, in malware 
identification, static and dynamic features can be 
considered as two main aspects of the problem. Static view 
includes bytecode, opcode and format features as three 

basic views [2], while dynamic features contain the system 
calls and the other behavioral features of the files [1]. 

To avoid detection, a malware file wants to appear 
as normal as possible, similar to the activities of other files. 
So, given a single aspect of the files, malicious activities 
may appear normal, while by analyzing multiple views 
there is more chance to reveal malfunctions [4]. Different 
feature views can provide complementary information 
about the actual payload of an executable file that maybe 
cannot be revealed by only one feature view [5].  

A malware family members have several 
resemblances, e.g. using similar APIs for their functionality 
and maybe there are some changes in how to employ them. 
It can be a basic assumption in machine learning that the 
instances of each class have been scattered on a subspace 
and each sample can be reconstructed with the rest of them 
[6]. Consequently, an unknown sample can be considered 
as a linear combination of the other samples in that class. 
By this motivation, Wright et al. introduced a simple but 
powerful classifier named Sparse Representation based 
Classifier (SRC) [6]. This idea has received a lot of attention 
in the realm of face recognition [7]–[10]. As the behavior of 
malicious files is also similar, it can be assumed that they 
also have lied on a subspace and a new file can be 
reconstructed with a linear combination of the files on that 
subspace. As SRC takes the advantages of sparsity, only a 
few samples participate in reconstructing an out-of-sample 
and the rest of them can be neglected. Since most of the real 
security databases are imbalance, SRC is a very good choice 
to use as the base classifier. 

In this research inspired by MVL, two variations of 
SRC are proposed using several aspects of a file for 
malware identification. Fig. 1 demonstrates the stages of 
proposed algorithms in a simple diagram. In both of them, 
multi-view features are employed in SRC to reconstruct an 
unknown sample and eventually, the final decision . 
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will be taken through an ensemble method.  

Figure. 1 The stages of two proposed algorithms 1.a) Pre-EDM that use pre-ensemble in the first stage of learning classifiers 1.b) Post-
EDM that build some independent classifiers individually and combine the results, finally.

Figure. 1.a shows Pre Ensemble Decision Making 
(Pre-EDM) schema and Fig. 1.b is due to Post Ensemble 
Decision Making (Post-EDM). The main difference is how 
to learn the classifiers; in Pre-EDM, a unified classifier is 
learned based on the consensus of reconstruction errors 
while in Post-EDM, some SRCs decide independently by 
each feature set and the combination phase is postponed to 
the final stage by through a weighted majority voting. As 
the proposed algorithms are in a similar trend, we have 
named them Pre/Post Ensemble Decision Making (PEDM). 

The main contributions of this paper are as follows: 

- Proposing two ensemble methods to combine the 
results of multi-views in two ways: to minimize the 
overall error of a classifier at the initial level and to 
ensemble the final results of individual classifiers. 

- Employing a lazy algorithm with sparsity virtue, i.e. 
SRC, that is not sensitive to imbalance data and is 
proper for real problems of malware detection and 
identification. 

The main advantages of PEDMs are their simplicity 
and parsimony while good accuracy. Furthermore, as the 
reconstruction stage in a sparse environment is only based 
on a few in-hand samples, they can manage the imbalanced 
datasets. Furthermore, due to the selected base classifier, 
these methods can handle multi-class problems.  

To assess the proposed methods, they have been 
tested on various datasets in the fields of Windows, Linux, 
and Android files. In most of them, the accuracies were 
more than 97\% and only for the most complicated of them 
it was more than 94\%. The mentioned approaches can be 
extended to any other problem with some aspects of features. 

The rest of this paper is organized as follows: 
Section 2 reviews the related work on MVL and its 
applications in several malware detection tasks. In Sect. 3, 
two proposed methods are investigated. Several datasets are 
introduced in Sect. 4 and according to each one, 
experimental results are presented and compared with the 
rival methods. Sect. 5 concludes the paper with a summary 
of the proposed work and discussions. 

2. Related Work 

In this section, firstly, the concepts of learning a 
model using multi-views are investigated and then, some 
worthy works in the realm of malware detection and 
identification are introduced. 

2.1 Multi-View Learning (MVL) 

Recently, many learning methods regarding the 
diversity of different views of data have been proposed. The 
motivation of MVL is to solve the problem of machine 
learning with data represented by multiple distinct feature 
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sets [11]. It is significant to make proper use of information 
from several views. Considering a problem from various 
standpoints is a common task in real-world applications and 
may lead to better recognition of the problem  [3].  

The simplest solution for MVL is to concatenate all 
multiple views into a unified vector and apply a common 
learning algorithm directly [3]. The drawback of this 
approach is the curse of dimensionality and often leads to 
overfitting. In this case employing some dimensionality 
reduction algorithms is useful, but still, the specific 
statistical property of each view is ignored  [3].  

In the recent literature, MVL methods are divided 
into three major categories: co-training, co-regularization, 
and margin consistency [3]. In Co-training learners are 
trained alternately on distinct views. Co-EM [12], Co-
testing [13], and Robust Co-training [14] are representatives 
of this family.  

For Co-regularization algorithms, the disagreement 
between the discriminant functions of two views is 
considered as a regularization term in the optimization 
function. Sparse multi-view SVMs [15], multi-view 
TSVMs [16], multi-view Laplacian SVMs [17] and multi-
view Laplacian TSVMs [18] are some major examples of 
this category. Another work proposed by Taheri et. al. is 
used several times in the security fields and to detect 
ransomware [19]. 

Margin-consistency algorithms use the latent 
consistency of classification results from multiple views 
[20]–[23]. This family is newer than the others and recently 
has been employed in the security tasks. Multi-view 
ensemble learning is the most famous method in this realm. 
In ensemble learning, multiple models such as classifiers or 
experts are combined to solve the problem. A significant 
application of ensemble learning is data fusion that 
improves the confidence of the decision made by the model 
[24]. Several studies have employed ensemble learning for 
malware detection tasks [5], [25]–[27]. 

2.2. Previous Work 

A key point of prosperity in any machine learning 
task is the available features. Several useful features can be 
extracted from samples to use for discerning the nature of 
them. Opcode n-grams are extracted from the code section 
of portable executable (PE) files and reveal significant 
information to detect unknown malware [28]–[31]. 
Bytecode n-grams are the entire binary executable program 
that has no explicit semantic information, but the sequence 
of bytecodes contains useful features for unknown malware 
detection [32]–[34]. Format features are other important 
traits that have explicit semantic information extracted from 
PE header, section header, import, and resource section. 

They have been used in several malware detection projects 
[35]–[38].  

Each aforementioned feature contains some details 
about the nature of a file, but all together provide 
complementary information for better diagnosis. Bai and 
Wang used multi-view ensemble learning for unknown 
malware detection and employed all three mentioned 
features together in their proposed method [5]. 

Other useful features that have been used several 
times in malware detection tasks are function-based. These 
features can be extracted from behaviors of an executable 
file that is running in an isolated environment [1]. 
Homayoun et al. proposed an efficient method to classify 
ransomware families based on some system call features 
[39]. Moreover, Menahem et al. employed function-based 
features besides PE features and bytes n-grams, then used 
different feature extraction parameters to construct five 
datasets. They construct five classifiers: C4.5 Decision Tree, 
Naïve Bayes, KNN, VFI, and OneR based on 
aforementioned datasets respectively. Consequently, they 
combined them for a final decision. The combination 
methods include majority voting, performance weighting, 
distribution summation, Bayesian combination, Naïve 
Bayes, stacking and Troika. Experimental results showed 
that using multi-view features and ensemble methods 
improved the accuracy and outperformed each of the 
mentioned single view classifiers [26].  

It is commonplace to extract several features from a 
view, e.g. opcode sequence, but these are the derivations of 
a single-view and cannot boost each other significantly for 
MVL proposes. Landage et al. made three different kinds of 
opcode sequence representations of the instances. Then, 
constructed three base classifiers with each representation 
and combined them with the majority and veto-based voting 
[40]. Final results did not show a significant improvement 
than the individual classifiers that can approve the 
advantages of combining some classifiers based on some 
distinct view. 

API calls are another feature view of the files that 
can be extracted while a file is running in a dedicated 
environment, so, it is a dynamic view. Sheen et al. extracted 
features from PE header moreover the API calls and ran 
different learning algorithms to construct a set of classifiers. 
Then selected the best subset of classifiers and combined 
them, and reached out better results than individual 
classifiers or other ensemble learning algorithms [27]. 
Caruana et. al. stated that combining a proper subset of base 
classifiers to constitute an ensemble may work better than 
using all of them [25]. They called this method Ensemble 
Selection (ES), which can achieve strong generalization 
performance with small sized base classifiers. 
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Android malware is another family of malicious 
files that have been mentioned in past years. Ozdemir et al. 
extracted some different static and dynamic features from 
APK files and employ multiple learning algorithms to 
construct diverse base classifiers. Then a subset of base 
classifiers was selected using a simple heuristic algorithm 
and combined them by majority voting. Experimental 
results show the superiority of this ensemble over the rival 
methods [41]. There were other proposed works in this 
realm that employ MVL in API calls of android executable 
files beside the other features and improve detection rate 
[42]. 

3. Proposed Method 

Ensemble methods combine some classifiers to 
obtain better results than could be reached from any of them 
[43]. The major strength of ensemble methods depends on 
the diversity of base classifiers. There are several 
techniques to reach such classifiers e.g. resampling the 
training set, using various learning algorithms or same 
learning algorithm with different parameters [44]. Using 
independent features to learn the classifiers is a good choice 
to reach diversity; e.g. employing MVL [3].  

The generalization of an ensemble method is usually 
stronger than base learners. In the earliest methods, it was 
common to use some weak learners as the individual 
classifiers, but many researches state that it is not necessary 
to generate weak classifiers [45]. Some prevalent ensemble 
methods employ decision tree and neural network as base 
classifiers. Most ensemble methods use a single base 
algorithm to produce homogeneous base learners, but 
selecting the most suitable algorithm according to the nature 
of existing samples is a crucial task. SRC is an applicable 
classifier [6] that has attracted much attention in the past 
decay. There are several improvements on this method that 
has been proposed recently [7]–[10]. 

The seminal work was proposed by John Wright [6]. 
The goal is to represent an out of sample as a linear 
combination of some selected instances. If there are 
sufficient training examples from each category, it is 
feasible to represent the test sample as a linear combination 
of just those samples from the same category [6]. To 
reconstruct a sample based on other instances the simple 
objective is: 

‖𝑠 − 𝑋𝑤‖                               (1) 
 
where s is a new sample, X contains the available instances 
and w is the vector of coefficients that should be sparse 
enough to choose a few samples for reconstruction. 
Minimizing the cardinality by adding l0-norm of w, forces 
many coefficients to be zero, but as the problem is NP-hard 

and intractable in general case, according to the convex 
envelope the constraint can be approximated with l1-norm 
[46]. 

𝑤∗ =  𝑎𝑟𝑔𝑚𝑖𝑛
௪

‖𝑠 − 𝑋𝑤‖ଶ + 𝜆‖𝑤‖ଵ                 (2) 

 
𝜆 is the regularization parameter to specify the sparsity level 
and can be defined due to the size of the dictionary [47]. 
There are several toolboxes, such as NESTA [48] and 
SPAMS [49] to solve this function in polynomial time, 
using coordinate descent [50].  

In the field of malware identification, suppose X is 
the matrix of labeled samples, each one is presented with d 
features in the rows. Consider n samples in the columns, n1 
belong to class 1, n2 belong to class 2 and so on. Fig. 2 
depicts this structure. So the obtained vector w contains n 
elements pertain to all available samples, n1 coefficients 
according to samples of class 1, n2 coefficients for samples 
of class 2 and so on. Most of the coefficients are negligible 
and only a few ones are valuable.  

 

Figure. 2 Each column of the matrix shows a sample in d 
dimensions. The first n1 samples are according to class 1, n2 
samples belong to class 2 and so on. 

Consequently, the test sample can be reconstructed 
with the samples of each class separately. As it was a 
preassumption that the samples of each class have lied on a 
subspace, the class with the minimum reconstruction error 
can define the class of the test sample [6]. 

𝑗∗ =  𝑎𝑟𝑔 𝑚𝑖𝑛
௝∈{ଵ,ଶ,…,௃}

ฮ𝑠 − 𝑋௝𝑤௝
∗ฮ                 (3) 

 
j shows the label of each class through J classes and j* is 
the label of the class with the minimum reconstruction error. 
Eq. 2 and 3 show the seminal method of SRC [6]. 

Figure. 3 can schematically depict the motivation of 
SRC. Here, since the samples of a class lie on a subspace, 
the new sample can be reconstructed with a linear 
combination of its neighborhoods on the path of that class. 
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Figure. 3 The spanned space of a class samples can be considered 
locally linear and each sample can be reconstructed with the linear 
combination of its adjacent on this path. 

Inspired by SRC and the idea behind MVL to 
consider the problem from several aspects, the first 
algorithm was proposed. So to make diverse classifiers, 
several feature sets are employed in SRC. The new file is 
reconstructed with a linear combination of available 
samples based on each feature view. The objective is to 
minimize the reconstruction error according to each view. 
Considering k views, the best coefficient vector w* is the 
one who minimizes the sum of errors according to all views. 
The modified function can be written as follows: 

𝑤∗ =  𝑎𝑟𝑔𝑚𝑖𝑛
௪

෍‖𝑠௞ − 𝑋௞𝑤௞‖ଶ

௄

௞ୀଵ

+ 𝜆‖𝑤௞‖ଵ                 (4) 

 
Due to the nature of each problem and the count of 

available samples, the best value for 𝜆  can be obtained 
through cross-validation. As the number of features in all 
views are not the same, it is vital to exert a normalization 
factor on each reconstruction error term and divide each one 
to the number of features related to that view: 

𝑤∗ =  𝑎𝑟𝑔𝑚𝑖𝑛
௪

෍
‖𝑠௞ − 𝑋௞𝑤௞‖ଶ

𝑑௞
+ 𝜆‖𝑤௞‖ଵ

௄

௞ୀଵ

               (5) 

 
where dk is the dimension of the kth view. w* is the best 
weight vector include the coefficients of training samples 
according to all views. Finally, the instances of the class that 
lead to the minimum sum of reconstruction errors regarding 
all feature sets, indicate the label of new sample: 

 

𝑗∗ =  𝑎𝑟𝑔 𝑚𝑖𝑛
௝∈{ଵ,ଶ,…,௃}

෍
ฮ𝑠௞ − 𝑋௝

௞𝑤௝
௞∗ฮ

𝑑௞

௄

௞ୀଵ

                 (6) 

 
As the aim of this optimization function is to 

minimize the sum of reconstruction errors, all views 
participate in the initial stage to find w* as a shared vector. 
Thus, this algorithm is named Pre Ensemble Decision 
Making (Pre-EDM). Algorithm 1 shows the stages of Pre-
EDM to label an unknown file. 

Algorithm 1:  Pre-EDM 
Input: a raw file 
output: the selected class 

1. Extract features of several views from all files. 
2. Find the best coefficient vector of w* that leads 

to minimum reconstruction error based on all 
features. 

3. Choose the class which best describe the out of 
sample through all views. 

 
Another perspective is to seek an independent 

sparse coefficient vector according to each view. Motivated 
by this idea, the second proposed method emerged. To do 
so, the objective function according to the kth view will be: 

 
𝑤௞∗ =  𝑎𝑟𝑔𝑚𝑖𝑛

௪ೖ
‖𝑠௞ − 𝑋௞𝑤௞‖ଶ + 𝜆‖𝑤௞‖ଵ              (7) 

 
Here, the vector of w* is obtained independently regarding 
each view, and then the out of sample can be reconstructed 
based on each wk* of a view: 

𝑗∗ =  𝑎𝑟𝑔 𝑚𝑖𝑛
௝∈{ଵ,ଶ,…,௃}

ฮ𝑠௞ − 𝑋௝
௞𝑤௝

௞∗ฮ                 (8) 

 

Finally, we have the verdict of individual classifiers 
according to each feature view and taking a majority vote 
over all of them, can determine the final decision. To 
agglomerate the votes of individual classifiers, we used 
weighted vote according to their accuracy. In this method, 
each classifier makes a decision independently based on a 
different coefficient vector in the middle stage and finally 
an ensemble on all decisions determine the class label, so, 
we named it Post Ensemble Decision Making (Post-EDM). 
Algorithm 2 shows the stages of Post-EDM consequently. 

Algorithm 2:  Post-EDM 
Input: a raw file 
output: the selected class 

1. Extract features of several views from all files. 
2. Find the best coefficient vector of w* that leads 

to minimum reconstruction error according to 
each set of features individually. 

3. Choose the class which best describe the out of 
sample through each view. 

4. Use a weighted vote to determine the final class 
label. 

 
The main difference between the two methods is 

how to combine the results of several views. In Pre-EDM, 
a unified SRC decides based on the consensus of all views 
and find the class with the minimum overall reconstruction 
error regarding all features, but Post-EDM at first makes 
some independent classifiers based on each view and 
eventually combine the independent opinions to determine 
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the final class label. In conclusion, both of them decide 
through a multi-view ensemble manner; Pre-EDM use 
multi-view and ensemble together in a common classifier, 
whilst, Post-EDM use multi-view at the first level of 
learning classifiers and employ ensemble for a final 
decision. 

As the main trend of the two proposed algorithms is 
the same, we named them PEDM. Another advantage of 

PEDM besides the precision is the insensitivity to 
imbalance data. As to reconstruct a new sample a linear 
combination of some in-hand instances are needed, the 
reconstruction can be considered locally linear and the rest 
of the samples in the intended class are not required. So 
PEDM is not dependent on all samples of a class and only 
needs the samples that lie on the subspace near the test 
sample. 

 

Table 1 The introduced datasets and their specifications. To evaluate the methods two binary class datasets include malware and benign 
files and two multi-class databases consist of some malware types are employed. 

dataset environment # samples # classes feature set 1 feature set 2 feature set 3 feature set 4 

IoT dataset Linux 551 2 opcodes 
TF-IDF 

opcode 
2-grams 

bytecode 
TF-IDF 

bytecode 
2-grams 

VXHeaven Windows 330 2 opcodes TF-
IDF 

opcode 
2-grams 

bytecode 
TF-IDF 

bytecode 
2-grams 

Ransomware 
dataset 

Windows 1627 4 system 
call 

opcodes 
TF-IDF 

opcode 
2-grams 

 

Microsoft 
malware 

Windows 10825 9 opcodes 
TF-IDF 

opcode 
2-grams 

opcode 
3-grams 

 

4. Experiments 

We have conducted several groups of experiments 
to evaluate the effectiveness of PEDM for malware 
classification. In this section, several datasets on various 
platforms, e.g. Android and Windows, are explained. 
Then, the capability of feature combination is illustrated 
and compared with the individual feature set and other 
rival methods. The used datasets and their specifications 
are introduced briefly in Table 1. Whereas PEDM does 
not need many samples from each class for reconstruction, 
firstly, some samples from each category are selected and 
then, the required features are extracted. 

To show the merit of PEDM, the results of them 
are compared with the SRC using each in-hand feature set 
and the concatenation of all feature sets. Employing 
supervector of all features was the seminal idea of MVL 
that was used in the previous work. The algorithms have 
been implemented in Matlab 2016b, and have run on a 
personal desktop equipped with a Core i7-3770 CPU and 
32GB of memory. To evaluate the methods some metrics 
are required. Accuracy is a useful metric that has been 
used widely in the machine learning assessments and 
considers the rate of true predictions with respect to all. If 
TP and TN are the malicious and benign files that have 
been classified true and N is the number of all samples 
accuracy will be: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑁
                 (9) 

 
However, in the case of imbalanced data, a 

supplementary evaluation is needed. Matthews 
Correlation Coefficient (MCC) [51] is another measures 
of quality exactly to evaluate the performance of 
classifiers in case of imbalanced datasets [52]. The MCC 
value is between -1 and +1 that high values are intended 
in a classifier. Assume S is the rate of positive samples 
and P is the rate of samples that classified as positive. 
Then, MCC can be shown as: 
 

𝑀𝐶𝐶 =  

𝑇𝑃
𝑁 − 𝑆 × 𝑁

ඥ𝑃𝑆(1 − 𝑃)(1 − 𝑆)
                 (10) 

 
Receiver Operating Characteristic (ROC) is 

another metric that initially has been used in the medicine 
and security tasks, while, it is adequate for any evaluation 
including imbalanced data [53]. ROC investigates a 
relationship between sensitivity and specificity of a binary 
classifier, while, sensitivity or true positive rate (TPR) 
measures the proportion of positives correctly classified. 
Specificity or true negative rate (TNR) measures a 
proportion of negatives correctly classified, and one 
minus TNR indicates false positive rate (FPR). In ROC, 
TPR is plotted against FPR and Area Under ROC Curve 
(AUC) is the most important statistic associated with ROC 
curve [53]. 
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4.1. Internet of Things (IoT) Dataset 

Nowadays, IoT devices become more and more 
prevalent and consequently many malware developers 
target IoT devices [54]. Thus, one of the selected datasets 
to challenge our method includes IoT files. In this dataset, 
280 malware samples were collected from 32-bit ARM-
based malware in the Virus Total Threat Intelligence 
platform. For compatibility of the malware and benign 
files, 271 common files of Linux Debian package 
repository were chosen [55]. The files were unpacked by 
the Debian installer bundle and Object-Dump tool was 
employed to decompile all samples. Consequently, the 
sequence of opcodes in each sample was obtained.  

After that, two feature sets are extracted from 
opcodes: TF-IDF and 2-grams. TF-IDF considers the 
repetition of each opcode in a file individually vs. the 
presence of this opcode in the other files, while 2-grams 
considers the importance of opcode sequences. Bytecode 
is another applicable view of the files. Then, two set of 
features according to bytecode TF-IDF and 2-grams are 
extracted. Eventually, we had 4 set of features to learn the 
classifiers. 

For the first evaluation pace, 100 samples are 
selected randomly from each class and then leave-one-out 
is exerted to reconstruct each sample with the rest of 199. 
Table 2 compares the results of PEDMs to the original 
SRC according to each set of features individually and 
using supervector of all features. The results are due to the 
average of 10 times random selection of samples from the 
initial dataset. The first row of the table is according to 
Haddadpajouh et. al. due to this dataset [55]. 

Table 2 Comparing the results of PEDMs on IoT dataset with 
SRC (based on four feature sets and the concatenation of all). 
Furthermore, the result of Haddadpajouh et. al. [55] due to this 
dataset from their paper is prepared at the first row of the table. 

 

IoT (100/100) TPR 
(%) 

FPR 
(%) 

accuracy 
(%) 

MMC 

Haddadpajouh 
et. al. [55] 

98.6 2.1 98.1 0.971 

SRC opcode 
TF-IDF 

96.1 3.2 95.3 0.931 

SRC opcode 
2-grams 

92.5 4.4 94.4 0.919 

SRC bytecode 
TF-IDF 

91.3 5.2 92.6 0.908 

SRC bytecode 
2-grams 

93.1 3.8 90.3 0.924 

SRC 
supervector 

97.9 2.8 96.7 0.967 

Pre-EDM 100 0.0 100 1.000 
Post-EDM 98.3 0.9 99.2 0.981 

 
 

 

Figure. 4 Comparing AUC and ROC curve of PEDMs with the 
SRCs according to opcode TF-IDF and supervector of all 
features on 100 selected samples of each class in IoT dataset. 

Fig. 4 shows the AUC and ROC curves according 
to the first run of some methods in Table 2. To prevent 
from the crowd diagram, the results of PEDMs have been 
compared with the best SRC according to a single feature 
set (opcode TF-IDF here) and supervector. According to 
the diagram, Pre-EDM has the perfect results and can 
detect all malicious IoT files. 

To investigate the imbalance effect on the 
proposed methods, we selected a subset of 100 benign and 
30 of malware samples. Table 3 shows the results 
according to 10 times random selection in the mentioned 
methods that show no major changes compared to the 
balanced condition. This can prove the ability of PEDMs 
to handle imbalanced conditions. 

Table 3 The averages of results on the imbalanced dataset 
according to Pre/Post ensemble. 

IoT 
(100/30) 

TPR 
(%) 

FPR 
(%) 

accuracy 
(%) 

MCC 

Pre-EDM 99.1 1.1 98.4 0.967 
Post-EDM 97.4 1.2 97.3 0.970 

4.2. VXHeaven Dataset 

VXHeaven is a benchmark dataset contains 
windows malware [56] and was used to evaluate several 
methods [57]–[59]. 1000 samples are picked randomly 
from the dataset and labeled as malware and benign. Then, 
TF-IDF and 2-grams according to opcodes and bytecodes 
of the selected files are extracted as 4 feature sets. 
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Table 4 The results of PEDMs on VXHeaven samples compared 
to SRC (based on four feature sets and the concatenation of all) 
and some recent methods. 

VXHeaven 
(100/100) 

TPR 
(%) 

FPR 
(%) 

Accuracy 
(%) 

MCC 

Farrokhmanesh 
et. al. [57] 

91.3 7.9 90.4 0.906 

Hashemi et. al. 
[58] 

89.1 7.8 89.7 0.9254 

Hashemi et. al. 
[59] 

96.0 3.1 94.7 0.925 

SRC opcode 
TF-IDF 

86.6 12.8 84.5 0.885 

SRC opcode 
2-grams 

85.5 14.4 87.4 0.890 

SRC bytecode 
TF-IDF 

88.3 7.6 89.6 0.833 

SRC bytecode 
2-grams 

90.3 5.2 90.1 0.916 

SRC 
supervector 

92.9 5.5 93.6 0.927 

Pre-EDM 96.2 2.1 97.3 0.961 
Post-EDM 97.4 2.3 97.1 0.966 

 
 

The mentioned algorithms are applied on samples 
10 times; each time 100 samples are picked randomly 
from each class and the mean of results are presented in 
Table 4. Leave-one-out is exerted, while the runtime for 
each sample was less than a second. The first three rows 
of the table are due to some available methods that 
recently have worked on this dataset. 

As we faced to a binary class dataset, we examined 
imbalanced condition for PEDMs again. To do so, a subset 
of 100 benign and 30 malware samples are selected 
randomly, 10 times. Table 5 implies the ability of the 
proposed methods to challenge the imbalanced conditions. 

Table 5 The averages of results on the imbalanced dataset 
according to Pre/Post ensemble. 

VXHeaven 
(100/30) 

TPR 
(%) 

FPR 
(%) 

accuracy 
(%) 

MCC 

Pre-EDM 98.3 1.2 98.9 0989 
Post-EDM 97.6 1.4 98.2 0.977 

 
Figure. 5 shows the AUC and ROC curves 

according to the first run of PEDMs in compared with the 
best SRC according to single feature set (bytecode 2-
grams here) and supervector that were in Table 6. As see, 
bytecode 2-grams is the best single feature set in this case 
and Pre-EDM shows the best results of all for 100 samples 
in each class.  

 

 
1 https://www.virustotal.com 

 

Figure. 5 Comparing AUC and ROC curve of PEDMs with the 
SRCs according to bytecode 2-grams and supervector of all 
features on 100 selected samples of each class in VXHeaven 
dataset. 

4.3. Ransomware Dataset 

As another evaluation, ransomware dataset has 
been employed [39]. The ransomware dataset contains 
sequences of activities according to some Windows 
Portable Executable (PE32) ransomware samples reported 
as malicious from Virustotal1. This dataset consists of 
three famous families of ransomware namely Locky, 
Cerber and TeslaCrypt. As ransomware samples are in 
form of PE files, portable applications available at the 
portableapps website2 are considered as benign samples. 
Table 6 shows the number of samples in the dataset with 
three families of ransomware and a group of benign 
samples. 
 

Table 6 The number of samples in each family of ransomware 
and benign. 

Class number of samples 
Locky 450 

Cerber 470 

TeslaCrypt 507 

Benign 200 

 
All samples were launched in a special testbed to 

collect runtime behaviors of ransomware and normal 

2  https://portableapps.com/app 
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samples. The runtime behaviors were considered as 
system calls performed by process of a monitored sample 
that leads to the first view of the samples. Moreover, two 
sets of features were extracted from opcodes: TF-IDF and 
2-grams. 

 

Table 7 Comparing the results of PEDMs on ransomware with 
SRC (based on three feature sets and the concatenation of all) 
and Homayoon et. al. [39] who gathered this dataset. 

 

ransomware 
(4 × 50) 

TPR 
(%) 

FPR 
(%) 

accuracy 
(%) 

MCC 

Homayoun et. 
al. [39] 

98.0 2.6 97.2 0.973 

SRC System 
calls 

86.3 12.1 85.2 0.881 

SRC opcode 
TF-IDF 

89.5 9.7 92.9 0.912 

SRC opcode 
TF-IDF 

91.5 7.0 90.3 0.919 

SRC 
supervector 

96.2 4.9 94.9 0.926 

Pre-EDM 98.6 1.3 98.9 0.979 
Post-EDM 98.9 0.8 98.7 0.983 

 

As a few samples were adequate for the learning 
and a multi-class classification problem was ahead, we 
selected 50 samples of each class randomly and exerted 
leave-one-out for assessment. These steps were repeated 
10 times and the results were summed up in table 7. The 
first row of the table is the results of Homayoon et. al. [39] 
that were reported in their paper according to the prepared 
database. 

 

4.4. Microsoft Malware Dataset 

Another Windows-based malicious dataset that 
has been used in our evaluation is Microsoft malware 
collection that was presented in the Microsoft malware 
classification challenge from the Kaggle website [60]. 
This dataset contains more than 10000 samples from 9 
families of malware variants that have been analyzed 
statically to obtain their opcodes. Consequently, TF-IDF, 
2-grams, and 3-grams of the opcodes from 900 files of all 
classes are extracted. 

We selected 40 samples of each class randomly 10 
times and repeat our experiments for each subset. Table 8 
shows the average accuracies and the standard deviation 
according to 10 runs. Whereas all three feature sets are 
pertained to opcodes, in this case, the results of the 
ensemble methods are not significantly superior. 

 

Table 8 Comparing the results of PEDMs on Microsoft malware 
dataset with SRC (based on three feature sets and the 
concatenation of all). 

ransomware 
(4 × 50) 

TPR 
(%) 

FPR 
(%) 

Accuracy 
(%) 

MCC 

SRC opcode 
TF-IDF 

91.7 8.8 92.9 0.914 

SRC opcode 
2-gram 

92.8 4.6 92.3 0.917 

SRC opcode 
3-gram 

94.7 5.6 93.4 0.936 

SRC 
supervector 

93.2 6.1 94.5 0.926 

Pre-EDM 96.1 2.9 94.9 0.940 
Post-EDM 94.4 5.7 94.3 0.951 

5. Conclusion and Future Work 

In this study, inspired by multi-view learning 
(MVL) two ensemble methods have been proposed for 
malware identification and classification, namely Pre/Post 
Ensemble Decision Making (PEDM). The chosen base 
classifier was a variation of Sparse Representation based 
Classifier (SRC) that has been used widely in face 
recognition tasks. Whereas using multi-views of the files, 
e.g. opcode, bytecode, and system calls, help the 
classifiers to reveal the hidden dimensions of a malware 
file, we used them in each individual classifier and 
combine the results in two ways. 

Actually, the difference of PEDMs is in the 
combination phase; Pre-EDM employs multi-views of the 
files to minimize the consensus error of a unified classifier 
at the first level, while Post-EDM learns some individual 
classifiers independently and postpone the combination of 
results to the final decision. 

The proposed methods outperform any individual 
based classifiers trained on a single feature set and show 
elegant results on several datasets that have been 
investigated in the experimental results. Moreover, 
accuracy and MCC is better than the rival methods in this 
field. The advantages of PEDMs can be considered as 
follows: 

- Combining the effect of several views of a file for 
discerning its class. 

- The ability to handle multi-class classification tasks. 

- The ability to deal with the imbalanced datasets. 

As the future work, we suggest learning the 
combination phase of the algorithms intelligently. To do 
so, we can learn each classifier individually and then learn 
a model for the best combination of them. Another 
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suggestion is to extend these methods to the other machine 
learning tasks. There are various approaches in the real 
world that suffer from the nature of imbalanced data and 
can take the advantages of PEDMs. 
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