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Summary

Machine learning approaches use a variety of features such as
opcodes, bytecodes, and system-calls to achieve accurate malware
detection. Each of these feature sets provides a unique semantic
view, while, considering the effect of all together is more reliable
to detect attacks. A malware can disguise itself in some views, but
disguising in all views will be much more difficult. By this
motivation, multi-view learning (MVL) considers multiple views
of a problem to improve the overall performance. In this paper,
two approaches are proposed to incorporate some various feature
sets and exploit complementary information to identify the
category of a file. To alleviate the complexity of the problem
sparse representation is employed to make the base classifier. Then,
two ways are introduced to combine the effect of multi-view. At
first, the consensus of multiple views are used to minimize the
overall error of a classifier and as the second, some independent
classifiers are learned and weighted voting is used for the final
decision. To show the generalization power of the proposed
method, several datasets are investigated. Experimental results
indicate that in addition to simplicity and high performance,
regarding the selected base classifier, the proposed methods are
able to handle imbalanced datasets.
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1. Introduction

Malware stands for Malicious Software, which is a
program designed for malicious purposes [1]. They include
families such as virus, worm, Trojan, backdoor, rootkit,
DoS, and exploit. As the complexity and concealment tricks
of malware are improved progressively, employing the
machine learning findings can improve the model
performance against zero-day attacks [2]. Considering
some distinct attributes of data helps to combine several
aspects of information that may bring performance
improvement. This led to propose a new approach in
machine learning named multi-view learning (MVL) [3].
For example in image processing, color and texture
information are two different features, which can be
regarded as two-views data. As well, in malware
identification, static and dynamic features can be
considered as two main aspects of the problem. Static view
includes bytecode, opcode and format features as three
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basic views [2], while dynamic features contain the system
calls and the other behavioral features of the files [1].

To avoid detection, a malware file wants to appear
as normal as possible, similar to the activities of other files.
So, given a single aspect of the files, malicious activities
may appear normal, while by analyzing multiple views
there is more chance to reveal malfunctions [4]. Different
feature views can provide complementary information
about the actual payload of an executable file that maybe
cannot be revealed by only one feature view [5].

A  malware family members have several
resemblances, e.g. using similar APIs for their functionality
and maybe there are some changes in how to employ them.
It can be a basic assumption in machine learning that the
instances of each class have been scattered on a subspace
and each sample can be reconstructed with the rest of them
[6]. Consequently, an unknown sample can be considered
as a linear combination of the other samples in that class.
By this motivation, Wright et al. introduced a simple but
powerful classifier named Sparse Representation based
Classifier (SRC) [6]. This idea has received a lot of attention
in the realm of face recognition [7]-[10]. As the behavior of
malicious files is also similar, it can be assumed that they
also have lied on a subspace and a new file can be
reconstructed with a linear combination of the files on that
subspace. As SRC takes the advantages of sparsity, only a
few samples participate in reconstructing an out-of-sample
and the rest of them can be neglected. Since most of the real
security databases are imbalance, SRC is a very good choice
to use as the base classifier.

In this research inspired by MVL, two variations of
SRC are proposed using several aspects of a file for
malware identification. Fig. 1 demonstrates the stages of
proposed algorithms in a simple diagram. In both of them,
multi-view features are employed in SRC to reconstruct an
unknown sample and eventually, the final decision .
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will be taken through an ensemble method.
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Figure. 1 The stages of two proposed algorithms 1.a) Pre-EDM that use pre-ensemble in the first stage of learning classifiers 1.b) Post-
EDM that build some independent classifiers individually and combine the results, finally.

Figure. 1.a shows Pre Ensemble Decision Making
(Pre-EDM) schema and Fig. 1.b is due to Post Ensemble
Decision Making (Post-EDM). The main difference is how
to learn the classifiers; in Pre-EDM, a unified classifier is
learned based on the consensus of reconstruction errors
while in Post-EDM, some SRCs decide independently by
each feature set and the combination phase is postponed to
the final stage by through a weighted majority voting. As
the proposed algorithms are in a similar trend, we have
named them Pre/Post Ensemble Decision Making (PEDM).

The main contributions of this paper are as follows:

- Proposing two ensemble methods to combine the
results of multi-views in two ways: to minimize the
overall error of a classifier at the initial level and to
ensemble the final results of individual classifiers.

- Employing a lazy algorithm with sparsity virtue, i.e.
SRC, that is not sensitive to imbalance data and is
proper for real problems of malware detection and
identification.

The main advantages of PEDMs are their simplicity
and parsimony while good accuracy. Furthermore, as the
reconstruction stage in a sparse environment is only based
on a few in-hand samples, they can manage the imbalanced
datasets. Furthermore, due to the selected base classifier,
these methods can handle multi-class problems.

To assess the proposed methods, they have been
tested on various datasets in the fields of Windows, Linux,
and Android files. In most of them, the accuracies were
more than 97\% and only for the most complicated of them
it was more than 94\%. The mentioned approaches can be
extended to any other problem with some aspects of features.

The rest of this paper is organized as follows:
Section 2 reviews the related work on MVL and its
applications in several malware detection tasks. In Sect. 3,
two proposed methods are investigated. Several datasets are
introduced in Sect. 4 and according to each one,
experimental results are presented and compared with the
rival methods. Sect. 5 concludes the paper with a summary
of the proposed work and discussions.

2. Related Work

In this section, firstly, the concepts of learning a
model using multi-views are investigated and then, some
worthy works in the realm of malware detection and
identification are introduced.

2.1 Multi-View Learning (MVL)

Recently, many learning methods regarding the
diversity of different views of data have been proposed. The
motivation of MVL is to solve the problem of machine
learning with data represented by multiple distinct feature
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sets [11]. It is significant to make proper use of information
from several views. Considering a problem from various
standpoints is a common task in real-world applications and
may lead to better recognition of the problem [3].

The simplest solution for MVL is to concatenate all
multiple views into a unified vector and apply a common
learning algorithm directly [3]. The drawback of this
approach is the curse of dimensionality and often leads to
overfitting. In this case employing some dimensionality
reduction algorithms is useful, but still, the specific
statistical property of each view is ignored [3].

In the recent literature, MVL methods are divided
into three major categories: co-training, co-regularization,
and margin consistency [3]. In Co-training learners are
trained alternately on distinct views. Co-EM [12], Co-
testing [ 13], and Robust Co-training [14] are representatives
of this family.

For Co-regularization algorithms, the disagreement
between the discriminant functions of two views is
considered as a regularization term in the optimization
function. Sparse multi-view SVMs [15], multi-view
TSVMs [16], multi-view Laplacian SVMs [17] and multi-
view Laplacian TSVMs [18] are some major examples of
this category. Another work proposed by Taheri et. al. is
used several times in the security fields and to detect
ransomware [19].

Margin-consistency algorithms use the latent
consistency of classification results from multiple views
[20]-[23]. This family is newer than the others and recently
has been employed in the security tasks. Multi-view
ensemble learning is the most famous method in this realm.
In ensemble learning, multiple models such as classifiers or
experts are combined to solve the problem. A significant
application of ensemble learning is data fusion that
improves the confidence of the decision made by the model
[24]. Several studies have employed ensemble learning for
malware detection tasks [5], [25]-[27].

2.2. Previous Work

A key point of prosperity in any machine learning
task is the available features. Several useful features can be
extracted from samples to use for discerning the nature of
them. Opcode n-grams are extracted from the code section
of portable executable (PE) files and reveal significant
information to detect unknown malware [28]-[31].
Bytecode n-grams are the entire binary executable program
that has no explicit semantic information, but the sequence
of bytecodes contains useful features for unknown malware
detection [32]-[34]. Format features are other important
traits that have explicit semantic information extracted from
PE header, section header, import, and resource section.

They have been used in several malware detection projects
[35]-38].

Each aforementioned feature contains some details
about the nature of a file, but all together provide
complementary information for better diagnosis. Bai and
Wang used multi-view ensemble learning for unknown
malware detection and employed all three mentioned
features together in their proposed method [5].

Other useful features that have been used several
times in malware detection tasks are function-based. These
features can be extracted from behaviors of an executable
file that is running in an isolated environment [1].
Homayoun et al. proposed an efficient method to classify
ransomware families based on some system call features
[39]. Moreover, Menahem et al. employed function-based
features besides PE features and bytes n-grams, then used
different feature extraction parameters to construct five
datasets. They construct five classifiers: C4.5 Decision Tree,
Naive Bayes, KNN, VFI, and OneR based on
aforementioned datasets respectively. Consequently, they
combined them for a final decision. The combination
methods include majority voting, performance weighting,
distribution summation, Bayesian combination, Naive
Bayes, stacking and Troika. Experimental results showed
that using multi-view features and ensemble methods
improved the accuracy and outperformed each of the
mentioned single view classifiers [26].

It is commonplace to extract several features from a
view, e.g. opcode sequence, but these are the derivations of
a single-view and cannot boost each other significantly for
MVL proposes. Landage et al. made three different kinds of
opcode sequence representations of the instances. Then,
constructed three base classifiers with each representation
and combined them with the majority and veto-based voting
[40]. Final results did not show a significant improvement
than the individual classifiers that can approve the
advantages of combining some classifiers based on some
distinct view.

API calls are another feature view of the files that
can be extracted while a file is running in a dedicated
environment, so, it is a dynamic view. Sheen et al. extracted
features from PE header moreover the API calls and ran
different learning algorithms to construct a set of classifiers.
Then selected the best subset of classifiers and combined
them, and reached out better results than individual
classifiers or other ensemble learning algorithms [27].
Caruana et. al. stated that combining a proper subset of base
classifiers to constitute an ensemble may work better than
using all of them [25]. They called this method Ensemble
Selection (ES), which can achieve strong generalization
performance with small sized base classifiers.
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Android malware is another family of malicious
files that have been mentioned in past years. Ozdemir et al.
extracted some different static and dynamic features from
APK files and employ multiple learning algorithms to
construct diverse base classifiers. Then a subset of base
classifiers was selected using a simple heuristic algorithm
and combined them by majority voting. Experimental
results show the superiority of this ensemble over the rival
methods [41]. There were other proposed works in this
realm that employ MVL in API calls of android executable
files beside the other features and improve detection rate
[42].

3. Proposed Method

Ensemble methods combine some classifiers to
obtain better results than could be reached from any of them
[43]. The major strength of ensemble methods depends on
the diversity of base classifiers. There are several
techniques to reach such classifiers e.g. resampling the
training set, using various learning algorithms or same
learning algorithm with different parameters [44]. Using
independent features to learn the classifiers is a good choice
to reach diversity; e.g. employing MVL [3].

The generalization of an ensemble method is usually
stronger than base learners. In the earliest methods, it was
common to use some weak learners as the individual
classifiers, but many researches state that it is not necessary
to generate weak classifiers [45]. Some prevalent ensemble
methods employ decision tree and neural network as base
classifiers. Most ensemble methods use a single base
algorithm to produce homogeneous base learners, but
selecting the most suitable algorithm according to the nature
of existing samples is a crucial task. SRC is an applicable
classifier [6] that has attracted much attention in the past
decay. There are several improvements on this method that
has been proposed recently [7]-[10].

The seminal work was proposed by John Wright [6].
The goal is to represent an out of sample as a linear
combination of some selected instances. If there are
sufficient training examples from each category, it is
feasible to represent the test sample as a linear combination
of just those samples from the same category [6]. To
reconstruct a sample based on other instances the simple
objective is:

lls — Xw|l 1)

where s is a new sample, X contains the available instances
and w is the vector of coefficients that should be sparse
enough to choose a few samples for reconstruction.
Minimizing the cardinality by adding /p-norm of w, forces
many coefficients to be zero, but as the problem is NP-hard

and intractable in general case, according to the convex
envelope the constraint can be approximated with /;-norm
[46].

w* = argmin||s — Xw||? + A|jw]|, (2)
w

A is the regularization parameter to specify the sparsity level
and can be defined due to the size of the dictionary [47].
There are several toolboxes, such as NESTA [48] and
SPAMS [49] to solve this function in polynomial time,
using coordinate descent [50].

In the field of malware identification, suppose X is
the matrix of labeled samples, each one is presented with d
features in the rows. Consider n samples in the columns, 7;
belong to class /, n; belong to class 2 and so on. Fig. 2
depicts this structure. So the obtained vector w contains n
elements pertain to all available samples, n; coefficients
according to samples of class 7, n, coefficients for samples
of class 2 and so on. Most of the coefficients are negligible
and only a few ones are valuable.

eee ooe eee oo }”J

Figure. 2 Each column of the matrix shows a sample in d
dimensions. The first n; samples are according to class I, n:
samples belong to class 2 and so on.

Consequently, the test sample can be reconstructed
with the samples of each class separately. As it was a
preassumption that the samples of each class have lied on a
subspace, the class with the minimum reconstruction error
can define the class of the test sample [6].

j'=arg min [is—xwi| ®3)
j shows the label of each class through J classes and j* is
the label of the class with the minimum reconstruction error.

Eq. 2 and 3 show the seminal method of SRC [6].

Figure. 3 can schematically depict the motivation of
SRC. Here, since the samples of a class lie on a subspace,
the new sample can be reconstructed with a linear
combination of its neighborhoods on the path of that class.
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Figure. 3 The spanned space of a class samples can be considered
locally linear and each sample can be reconstructed with the linear
combination of its adjacent on this path.

Inspired by SRC and the idea behind MVL to
consider the problem from several aspects, the first
algorithm was proposed. So to make diverse classifiers,
several feature sets are employed in SRC. The new file is
reconstructed with a linear combination of available
samples based on each feature view. The objective is to
minimize the reconstruction error according to each view.
Considering k views, the best coefficient vector w* is the
one who minimizes the sum of errors according to all views.
The modified function can be written as follows:

K
w* = argmi"ZIIs" = X*w |12 + Allw*|l, €))
w
k=1

Due to the nature of each problem and the count of
available samples, the best value for 1 can be obtained
through cross-validation. As the number of features in all
views are not the same, it is vital to exert a normalization
factor on each reconstruction error term and divide each one
to the number of features related to that view:

o llsE - xEwE 2 )
w* = argmin ) ——— + A |w¥||, 5)
W Zk dk
=1

where d* is the dimension of the kth view. w* is the best
weight vector include the coefficients of training samples
according to all views. Finally, the instances of the class that
lead to the minimum sum of reconstruction errors regarding
all feature sets, indicate the label of new sample:

- . N [Is* = xjw; 6
= e, i, ) ©

As the aim of this optimization function is to
minimize the sum of reconstruction errors, all views
participate in the initial stage to find w* as a shared vector.
Thus, this algorithm is named Pre Ensemble Decision
Making (Pre-EDM). Algorithm 1 shows the stages of Pre-
EDM to label an unknown file.

Algorithm 1: Pre-EDM
Input: a raw file
output: the selected class
1. Extract features of several views from all files.
2. Find the best coefficient vector of w* that leads
to minimum reconstruction error based on all
features.
3. Choose the class which best describe the out of
sample through all views.

Another perspective is to seek an independent
sparse coefficient vector according to each view. Motivated
by this idea, the second proposed method emerged. To do
so, the objective function according to the k" view will be:

w = argmin|ls® — X*w¥|| + llw*|l, (7
w

Here, the vector of w* is obtained independently regarding
each view, and then the out of sample can be reconstructed
based on each w** of a view:

j*=arg min ||s*-Xxfw}l
JE{1,2,...]}

®)

Finally, we have the verdict of individual classifiers
according to each feature view and taking a majority vote
over all of them, can determine the final decision. To
agglomerate the votes of individual classifiers, we used
weighted vote according to their accuracy. In this method,
each classifier makes a decision independently based on a
different coefficient vector in the middle stage and finally
an ensemble on all decisions determine the class label, so,
we named it Post Ensemble Decision Making (Post-EDM).
Algorithm 2 shows the stages of Post-EDM consequently.

Algorithm 2: Post-EDM
Input: a raw file
output: the selected class
1. Extract features of several views from all files.
2. Find the best coefficient vector of w* that leads
to minimum reconstruction error according to
each set of features individually.
3. Choose the class which best describe the out of
sample through each view.
4. Use a weighted vote to determine the final class
label.

The main difference between the two methods is
how to combine the results of several views. In Pre-EDM,
a unified SRC decides based on the consensus of all views
and find the class with the minimum overall reconstruction
error regarding all features, but Post-EDM at first makes
some independent classifiers based on each view and
eventually combine the independent opinions to determine



IJCSNS International Journal of Computer Science and Network Security, VOL.26 No.1, January 2026 183

the final class label. In conclusion, both of them decide
through a multi-view ensemble manner; Pre-EDM use
multi-view and ensemble together in a common classifier,
whilst, Post-EDM use multi-view at the first level of
learning classifiers and employ ensemble for a final
decision.

As the main trend of the two proposed algorithms is
the same, we named them PEDM. Another advantage of

PEDM besides the precision is the insensitivity to
imbalance data. As to reconstruct a new sample a linear
combination of some in-hand instances are needed, the
reconstruction can be considered locally linear and the rest
of the samples in the intended class are not required. So
PEDM is not dependent on all samples of a class and only
needs the samples that lie on the subspace near the test
sample.

Table 1 The introduced datasets and their specifications. To evaluate the methods two binary class datasets include malware and benign
files and two multi-class databases consist of some malware types are employed.

dataset environment # samples # classes feature set 1 feature set 2 | feature set 3 | feature set 4
ToT dataset Linux 551 2 opcodes opcode bytecode bytecode
TF-IDF 2-grams TF-IDF 2-grams
VXHeaven Windows 330 2 opcodes TF- opcode bytecode bytecode
IDF 2-grams TF-IDF 2-grams
Ransomware Windows 1627 4 system opcodes opcode
dataset call TF-IDF 2-grams
Microsoft Windows 10825 9 opcodes opcode opcode
malware TF-IDF 2-grams 3-grams
TP+TN ©)
. accuracy = ————
4. Experiments Y N

We have conducted several groups of experiments
to evaluate the effectiveness of PEDM for malware
classification. In this section, several datasets on various
platforms, e.g. Android and Windows, are explained.
Then, the capability of feature combination is illustrated
and compared with the individual feature set and other
rival methods. The used datasets and their specifications
are introduced briefly in Table 1. Whereas PEDM does
not need many samples from each class for reconstruction,
firstly, some samples from each category are selected and
then, the required features are extracted.

To show the merit of PEDM, the results of them
are compared with the SRC using each in-hand feature set
and the concatenation of all feature sets. Employing
supervector of all features was the seminal idea of MVL
that was used in the previous work. The algorithms have
been implemented in Matlab 2016b, and have run on a
personal desktop equipped with a Core 17-3770 CPU and
32GB of memory. To evaluate the methods some metrics
are required. Accuracy is a useful metric that has been
used widely in the machine learning assessments and
considers the rate of true predictions with respect to all. If
TP and TN are the malicious and benign files that have
been classified true and N is the number of all samples
accuracy will be:

However, in the case of imbalanced data, a
supplementary  evaluation is needed. Matthews
Correlation Coefficient (MCC) [51] is another measures
of quality exactly to evaluate the performance of
classifiers in case of imbalanced datasets [52]. The MCC
value is between -1 and +1 that high values are intended
in a classifier. Assume S is the rate of positive samples
and P is the rate of samples that classified as positive.
Then, MCC can be shown as:

E—S)(N

_ N
mee = JPSA-P)(1-9) (10)

Receiver Operating Characteristic (ROC) is
another metric that initially has been used in the medicine
and security tasks, while, it is adequate for any evaluation
including imbalanced data [53]. ROC investigates a
relationship between sensitivity and specificity of a binary
classifier, while, sensitivity or true positive rate (TPR)
measures the proportion of positives correctly classified.
Specificity or true negative rate (TNR) measures a
proportion of negatives correctly classified, and one
minus TNR indicates false positive rate (FPR). In ROC,
TPR is plotted against FPR and Area Under ROC Curve
(AUC) is the most important statistic associated with ROC
curve [53].
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4.1. Internet of Things (IoT) Dataset

Nowadays, IoT devices become more and more
prevalent and consequently many malware developers
target [oT devices [54]. Thus, one of the selected datasets
to challenge our method includes IoT files. In this dataset,
280 malware samples were collected from 32-bit ARM-
based malware in the Virus Total Threat Intelligence
platform. For compatibility of the malware and benign
files, 271 common files of Linux Debian package
repository were chosen [55]. The files were unpacked by
the Debian installer bundle and Object-Dump tool was
employed to decompile all samples. Consequently, the
sequence of opcodes in each sample was obtained.

After that, two feature sets are extracted from
opcodes: TF-IDF and 2-grams. TF-IDF considers the
repetition of each opcode in a file individually vs. the
presence of this opcode in the other files, while 2-grams
considers the importance of opcode sequences. Bytecode
is another applicable view of the files. Then, two set of
features according to bytecode TF-IDF and 2-grams are
extracted. Eventually, we had 4 set of features to learn the
classifiers.

For the first evaluation pace, 100 samples are
selected randomly from each class and then leave-one-out
is exerted to reconstruct each sample with the rest of 199.
Table 2 compares the results of PEDMs to the original
SRC according to each set of features individually and
using supervector of all features. The results are due to the
average of 10 times random selection of samples from the
initial dataset. The first row of the table is according to
Haddadpajouh et. al. due to this dataset [55].

Table 2 Comparing the results of PEDMs on loT dataset with
SRC (based on four feature sets and the concatenation of all).
Furthermore, the result of Haddadpajouh et. al. [55] due to this
dataset from their paper is prepared at the first row of the table.
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Figure. 4 Comparing AUC and ROC curve of PEDMs with the
SRCs according to opcode TF-IDF and supervector of all
features on 100 selected samples of each class in [oT dataset.

Fig. 4 shows the AUC and ROC curves according
to the first run of some methods in Table 2. To prevent
from the crowd diagram, the results of PEDMs have been
compared with the best SRC according to a single feature
set (opcode TF-IDF here) and supervector. According to
the diagram, Pre-EDM has the perfect results and can
detect all malicious IoT files.

To investigate the imbalance effect on the
proposed methods, we selected a subset of 100 benign and
30 of malware samples. Table 3 shows the results
according to 10 times random selection in the mentioned
methods that show no major changes compared to the
balanced condition. This can prove the ability of PEDMs
to handle imbalanced conditions.

Table 3 The averages of results on the imbalanced dataset

according to Pre/Post ensemble.
loT TPR FPR accuracy McCC
(100/30) (%) (%) (%)
Pre-EDM 99.1 1.1 98.4 0.967
Post-EDM 97.4 1.2 97.3 0.970

1oT (100/100) TPR FPR accuracy MMC
(%) (%) (%)
Haddadpajouh 98.6 2.1 98.1 0.971
et. al. [55]
SRC opcode 96.1 32 95.3 0.931
TF-II:]))F
SRC opcode 92.5 4.4 94.4 0.919
2-grams
SRC bytecode 91.3 5.2 92.6 0.908
TF-IDF
SRC bytecode 93.1 3.8 90.3 0.924
2-grams
SRC 97.9 2.8 96.7 0.967
supervector
Pre-EDM 100 0.0 100 1.000
Post-EDM 98.3 0.9 99.2 0.981

4.2. VXHeaven Dataset

VXHeaven is a benchmark dataset contains
windows malware [56] and was used to evaluate several
methods [57]-[59]. 1000 samples are picked randomly
from the dataset and labeled as malware and benign. Then,
TF-IDF and 2-grams according to opcodes and bytecodes
of the selected files are extracted as 4 feature sets.
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Table 4 The results of PEDMs on VXHeaven samples compared
to SRC (based on four feature sets and the concatenation of all)
and some recent methods.

VXHeaven TPR FPR | Accuracy MccC
(100/100) (%) (%) (%)
Farrokhmanesh 91.3 7.9 90.4 0.906
et. al. [57]
Hashcfrsngi]et. al. 89.1 7.8 89.7 0.9254
Hash?rsngi]et. al. 96.0 3.1 94.7 0.925
SRC opcode 86.6 12.8 84.5 0.885
TF-IDF
SRC opcode 85.5 14.4 87.4 0.890
2-grams
SRC bytecode 88.3 7.6 89.6 0.833
TF-IDF
SRC bytecode 90.3 5.2 90.1 0.916
2-grams
SRC 92.9 5.5 93.6 0.927
supervector
Pre-EDM 96.2 2.1 97.3 0.961
Post-EDM 97.4 2.3 97.1 0.966

The mentioned algorithms are applied on samples
10 times; each time 100 samples are picked randomly
from each class and the mean of results are presented in
Table 4. Leave-one-out is exerted, while the runtime for
each sample was less than a second. The first three rows
of the table are due to some available methods that
recently have worked on this dataset.

As we faced to a binary class dataset, we examined
imbalanced condition for PEDMs again. To do so, a subset
of 100 benign and 30 malware samples are selected
randomly, 10 times. Table 5 implies the ability of the
proposed methods to challenge the imbalanced conditions.

Table 5 The averages of results on the imbalanced dataset
according to Pre/Post ensemble.

VXHeaven TPR FPR accuracy mcc

(100/30) (%) (%) (%)
Pre-EDM 98.3 1.2 98.9 0989
Post-EDM 97.6 1.4 98.2 0.977

Figure. 5 shows the AUC and ROC curves
according to the first run of PEDMs in compared with the
best SRC according to single feature set (bytecode 2-
grams here) and supervector that were in Table 6. As see,
bytecode 2-grams is the best single feature set in this case
and Pre-EDM shows the best results of all for 100 samples
in each class.

! https://www.virustotal.com
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Figure. 5 Comparing AUC and ROC curve of PEDMs with the
SRCs according to bytecode 2-grams and supervector of all
features on 100 selected samples of each class in VXHeaven
dataset.

4.3. Ransomware Dataset

As another evaluation, ransomware dataset has
been employed [39]. The ransomware dataset contains
sequences of activities according to some Windows
Portable Executable (PE32) ransomware samples reported
as malicious from Virustotal'. This dataset consists of
three famous families of ransomware namely Locky,
Cerber and TeslaCrypt. As ransomware samples are in
form of PE files, portable applications available at the
portableapps website? are considered as benign samples.
Table 6 shows the number of samples in the dataset with
three families of ransomware and a group of benign
samples.

Table 6 The number of samples in each family of ransomware

and benign.
Class number of samples
Locky 450
Cerber 470
TeslaCrypt 507
Benign 200

All samples were launched in a special testbed to
collect runtime behaviors of ransomware and normal

2 https://portableapps.com/app
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samples. The runtime behaviors were considered as
system calls performed by process of a monitored sample
that leads to the first view of the samples. Moreover, two
sets of features were extracted from opcodes: TF-IDF and
2-grams.

Table 7 Comparing the results of PEDMs on ransomware with
SRC (based on three feature sets and the concatenation of all)
and Homayoon et. al. [39] who gathered this dataset.

ransomware TPR FPR accuracy Mmcc
(4% 50) (%) (%) (%)
Homayoun et. 98.0 2.6 97.2 0.973
al. [39]
SRCS.1 stem 86.3 12.1 85.2 0.881
calls
SRC opcode 89.5 9.7 92.9 0.912
TF-IDF
SRC OII]))COde 91.5 7.0 90.3 0.919
TF-IDF
SRC 96.2 49 94.9 0.926
supervector
Pre-EDM 98.6 1.3 98.9 0.979
Post-EDM 98.9 0.8 98.7 0.983

As a few samples were adequate for the learning
and a multi-class classification problem was ahead, we
selected 50 samples of each class randomly and exerted
leave-one-out for assessment. These steps were repeated
10 times and the results were summed up in table 7. The
first row of the table is the results of Homayoon et. al. [39]
that were reported in their paper according to the prepared
database.

4.4. Microsoft Malware Dataset

Another Windows-based malicious dataset that
has been used in our evaluation is Microsoft malware
collection that was presented in the Microsoft malware
classification challenge from the Kaggle website [60].
This dataset contains more than 10000 samples from 9
families of malware variants that have been analyzed
statically to obtain their opcodes. Consequently, TF-IDF,
2-grams, and 3-grams of the opcodes from 900 files of all
classes are extracted.

We selected 40 samples of each class randomly 10
times and repeat our experiments for each subset. Table 8
shows the average accuracies and the standard deviation
according to 10 runs. Whereas all three feature sets are
pertained to opcodes, in this case, the results of the
ensemble methods are not significantly superior.

Table 8 Comparing the results of PEDMs on Microsoft malware
dataset with SRC (based on three feature sets and the
concatenation of all).

ransomware TPR FPR Accuracy McCC
(4 %50) (%) (%) (%)
SRC opcode 91.7 8.8 92.9 0.914
TE-IDF
SRC opcode 92.8 4.6 923 0.917
2-gram
SRC opcode 94.7 5.6 93.4 0.936
3-gram
SRC 93.2 6.1 945 0.926
supervector
Pre-EDM 96.1 2.9 94.9 0.940
Post-EDM 94.4 5.7 943 0.951

5. Conclusion and Future Work

In this study, inspired by multi-view learning
(MVL) two ensemble methods have been proposed for
malware identification and classification, namely Pre/Post
Ensemble Decision Making (PEDM). The chosen base
classifier was a variation of Sparse Representation based
Classifier (SRC) that has been used widely in face
recognition tasks. Whereas using multi-views of the files,
e.g. opcode, bytecode, and system calls, help the
classifiers to reveal the hidden dimensions of a malware
file, we used them in each individual classifier and
combine the results in two ways.

Actually, the difference of PEDMs is in the
combination phase; Pre-EDM employs multi-views of the
files to minimize the consensus error of a unified classifier
at the first level, while Post-EDM learns some individual
classifiers independently and postpone the combination of
results to the final decision.

The proposed methods outperform any individual
based classifiers trained on a single feature set and show
elegant results on several datasets that have been
investigated in the experimental results. Moreover,
accuracy and MCC is better than the rival methods in this
field. The advantages of PEDMs can be considered as
follows:

- Combining the effect of several views of a file for
discerning its class.

- The ability to handle multi-class classification tasks.
- The ability to deal with the imbalanced datasets.

As the future work, we suggest learning the
combination phase of the algorithms intelligently. To do
so, we can learn each classifier individually and then learn
a model for the best combination of them. Another
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suggestion is to extend these methods to the other machine
learning tasks. There are various approaches in the real
world that suffer from the nature of imbalanced data and
can take the advantages of PEDMs.
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