

Automated Procedure Generator for Payload Testing

Aravind Sunil¹, Narayana Rao G S², Prakriti Sahay³, Senapati Govinda⁴, Subbaraya Sastry⁵ C.V.R⁵

¹ Spacecraft Checkout Group, U.R. Rao Satellite Centre, Bengaluru, India, aravinds@ursc.gov.in

² Spacecraft Checkout Group, U.R. Rao Satellite Centre, Bengaluru, India, nraogs@ursc.gov.in

³ Spacecraft Checkout Group, U.R. Rao Satellite Centre, Bengaluru, India, prakriti@ursc.gov.in

⁴ Spacecraft Checkout Group, U.R. Rao Satellite Centre, Bengaluru, India, sgovinda@ursc.gov.in

⁵ Spacecraft Checkout Group, U.R. Rao Satellite Centre, Bengaluru, India, cvs@ursc.gov.in

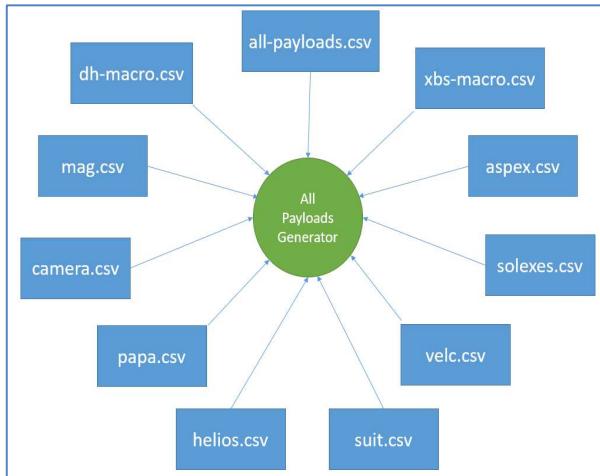
Abstract

In this paper we describe our new automated procedure generator, implemented in JAVA [1] which generates Automated Checkout Software System (ACSS) compatible test procedures for Aditya-L1 Payload Testing from input csv files. The csv files contain payload configuration details for which the procedure is to be generated. We start with an introduction to the payloads and requirement for payload testing in Aditya-L1. Then we focus upon the All-Payload Procedure Generator which generates a combined test procedure for all payloads to be operated together. Further we move on to VELC Procedure Generator which generates procedures for Visible Emission Line Coronagraph (VELC) payload testing which is in turn based on a chain of mathematical computations. Finally, we touch upon Solar Ultraviolet Imaging Telescope (SUIT) procedure generator which converts program execution format for SUIT from subsystem format to ACSS compatible format.

Keywords:

Payloads, Procedure, csv, XBS, DH

1. Introduction


The Aditya-L1 spacecraft is dedicated to in-detail study of the Sun from L1 point and has been successfully carrying out its mission objectives [2]. The payloads in Aditya-L1 include an Imaging Camera, Aditya Solar wind Particle Experiment (ASPEX) [3], High Energy L1 Orbiting X-ray Spectrometer (HEL1OS) [4], SUIT [5], VELC [6], Plasma Analyser Package for Aditya (PAPA) [7], Magnetometer [8] and Solar Low Energy X-ray Spectrometer (SoLEXS). ASPEX has Solar Wind Ion Spectrometer (SWIS) and Supra-Thermal & Energetic Particle Spectrometer (STEPS) as sub-payloads while VELC has Continuum, Spectroscopy 1, Spectroscopy 2, and Infrared Imaging Channels/Sub-payloads. Out of these payloads, the procedure generation for VELC was very tricky since

there were around 80 commands to Data Handling System (DH) for full configuration for VELC operations which in turn is based on a chain of mathematical computations. The conventional procedure preparation approach for VELC seemed to be voluminous and prone to human errors. In addition to DH configuration, VELC sub-payload configuration commands had to be derived from csv files, shared by payload team. Hence, we decided to build our VELC procedure generator for auto generation of VELC procedures. SUIT had around 50 program sequences to be uplinked to the payload to cover all the test cases. The program sequences in subsystem format were shared with us which we had to convert to ACSS compatible format for carrying out Ground Checkout IST (Integrated Spacecraft Testing) activities. Finally, we had test cases wherein we had to operate different combinations of payloads and other sub-systems in the loop which demanded an All-payloads Procedure Generator. Hence, we have built a combined software for the above requirement which could generate VELC procedures, SUIT procedures and All-Payloads combined procedures with ease. In this paper we shall describe our procedure generation methodology with the automated procedure generator, with corresponding procedure structure, computations and input and output formats for the software.

2. All-Payloads Procedure Generator

As discussed earlier, there were 7 Payloads to be tested in Aditya-L1, for each Payload one BDH Configuration must be performed followed by Payload Configuration. Before Payload data starts, SSR Recording to be started and after the Payload data has stopped, SSR Recording to be stopped. Once all the payloads to be

switched Off, the same file which has been recorded in has to be Played back, and the Data Formatting Unit (DFU) must be configured with the modulation and data rate required as per the configuration decided. There were more than 55 Payload Configuration procedure to be generated, each of the procedures having approximately 170 to 200 commands and similar number of Telemetry checks. The automated Procedure generator was used to generate all the procedures by using the CSV file generated by Checkout team for deciding the Payload Configurations.

Figure 1 All-Payloads Procedure Generator

2.1. CSV File as Input

We used a main *csv* file as input to our All-Payloads Procedure Generator, parsed with *opencsv* [9] library in java. The columns in *csv* includes serial number, configuration name, one column for each payload, main/redundant selection for Baseband Data Handling System (BDH), X-Band System (XBS) and TWTA (Twisted Wave Tube Amplifier), modulation, data rate, Trellis Coded Modulation (TCM) Selection, Onboard Computer (OBC) Selection, bus selection and wait time as in Fig. 2. Each test procedure used in Aditya-L1 has a corresponding configuration number based on the payload chain configuration, which

Config Nar Camera	VELC	Magnetometer	BDH	XBS	TWTA	Modulation
PL-Cfg-13	VELC-17	MAG-1	M	M	M	8-PSK
PL-Cfg-14	VELC-11	MAG-1	M	M	M	8-PSK
PL-Cfg-15	VELC-12	MAG-1	M	M	M	Q-PSK
PL-Cfg-16	VELC-13	MAG-1	M	M	M	Q-PSK
PL-Cfg-17	VELC-14	MAG-1	M	M	M	8-PSK
PL-Cfg-18	VELC-15	MAG-1	M	M	M	8-PSK
PL-Cfg-19	VELC-16	MAG-1	M	M	M	8-PSK
PL-Cfg-20	VELC-10	NA	M	M	M	8-PSK
PL-Cfg-21	VELC-20	NA	M	M	M	8-PSK
PL-Cfg-22	VELC-21	NA	M	M	M	8-PSK
PL-Cfg-23	VELC-22	NA	M	M	M	8-PSK
PL-Cfg-24	VELC-23	NA	M	M	M	8-PSK
PL-Cfg-25	VELC-24	NA	M	M	M	8-PSK
PL-Cfg-26	VELC-24	NA	M	M	M	8-PSK
PL-Cfg-27	VELC-24	NA	M	M	M	8-PSK
PL-Cfg-28	VELC-24	NA	M	M	M	8-PSK
PL-Cfg-29	VELC-24	NA	M	M	M	8-PSK
PL-Cfg-30	VELC-24	NA	M	M	M	8-PSK
PL-Cfg-31	VELC-24	NA	M	M	M	8-PSK
PL-Cfg-32	VELC-24	NA	M	M	M	8-PSK
PL-Cfg-33	VELC-30	NA	R	R	M	8-PSK

Figure 2 CSV Input to All-Payloads Generator

corresponds to one row in the *csv* file. Individual columns for each payload contains the corresponding payload sub-configuration, to be used for the given configuration. BDH, XBS, TWTA selections denote main/redundant selections for these subsystems.

Based on these entries, corresponding subsystem configuration macro shall be called in the procedure. 8PSK and QPSK modulation schemes are supported in Aditya-L1. Supported Data Rates are 4Mbps, 6Mbps, 8Mbps, 12Mbps and 24 Mbps. Possible OBC and Bus Selections are OBC1/OBC2 and Bus-A/Bus-B respectively. Wait time represents the number of seconds data is to be recorded in SSR. The column *vdmwait* denotes the number of seconds to be waited for VDM (VELC Drive Mechanism) movements.

2.2. Procedure Generation from CSV

- Procedure title shall be derived from the configuration name.
- OBC selection call as in step 9010.20 of Fig. 3.
- Appropriate Telemetry checks shall be added based on subsystem selections and available payloads in the configuration, as in step 9010.40 of Fig. 3.
- For each payload column indicating the payload configuration, a corresponding *csv* file shall be prepared which provides additional information,

including the corresponding payload sub-procedure name to be called. For instance, corresponding to *VELC* column in Fig. 2, *velc.csv* too shall be created with configuration name and sub-procedure name mapping. Our software shall look for the appropriate sub-procedure name and shall insert the corresponding sub-procedure call. A sub-procedure call for PAPA payload configuration 2 is shown in step 9010.120 of Fig. 3.

- e. Based on BDH selection, Data Rate and TCM coding scheme, corresponding macro mapping shall be matched and a *SEND* command with macro name shall be inserted into the procedure.
- f. Based on XBS and TWTA selection, corresponding xbs macro *SEND* command shall be inserted into the procedure.
- g. SSR (Solid State Recorder) record start shall be added immediately after pre-requisite checks and record stop shall be added, post payload and DH configuration, after waiting for the specified wait period.
- h. Remarks shall be added wherever necessary.

2.3. Procedure Structure

The procedure structure is based on the subsystem switch ON/OFF and operation sequences, as agreed upon by the designers and review committee. The procedure operation sequence for Aditya-L1 is as follows:

```
!*****
!          PROJECT: Aditya-L1
!*****
!          FILE NAME: PL-Cfg-10.tst
!          Payload Configuration: PL-Cfg-10
!*****
9010.10    TESTNAME    PL-Cfg-10.tst

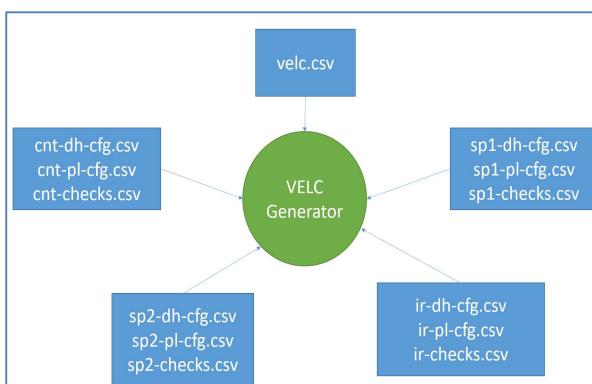

9010.20    CALL        obc1-sel.tst
9010.30    REMARK     Prerequisite Checks
9010.40    CHECK       ODHM-CTRL5V-MON;
                     BDH-Msg-Tr-Sts = Ena;
                     SR-B0-PWR-STs=ON;
                     SR-B1-PWR-STs=ON;
                     DH-L-RFU-Mod=REC_PB;
                     DH-SUT-RFU-Mod=REC_PB;
                     DH-VL1-Mode=REC_PB;
                     DH-VL2-Mode=REC_PB;
                     DH-VL-AuxEna=ENA;
                     DH-SUT-Aux-Ena=ENA;
                     VDM-M-E1x-Sts=On;
                     PAP-DC-DC1-Sts = ON;
                     PAP-DC-DC2-Sts=OFF;
                     PAP-DC1-15V-Mon;
                     PAP-5V-Mon;
                     PAP-PPU-5V = ON;
                     PAP-HVPPS-5V =ON
9010.50    REMARK     SSR Record Start
9010.60    SENDLIST   SSR0-Rec-L0-FID XXXX;
                     SSR1-Rec-L0-FID XXXX;
                     SSR1-Rec-L1-FID XXXX
9010.70    REMARK     DFU Configuration for each Payload
9010.80    SEND       dh-pap-cnfg
9010.90    WAIT       5 sec
9010.100   SENDLIST   DH-PAPA-AcqEna
9010.110   REMARK     Payload Configurations
9010.120   CALL        pap-cfg2.pl
9010.130   WAIT       500 sec
9010.140   SENDLIST   PAP-SenOprItrlk;
                     PAP-DataAcqStop
9010.150   WAITTILL   960 sec PAP-DataAcq-On=OFF
9010.160   REMARK     DFU Acquisition Disable
9010.170   SENDLIST   DH-StHELAqDis;
                     DH-StAcqDis;
                     DH-SW-AcqDis;
                     DH-STP-AcqDis;
                     DH-SLX-AcqDis;
                     DH-PAPMagAcqDis;
                     DH-HEL-AcqDis;
                     DH-M1-AllAcqDis;
                     DH-M2-AllAcqDis
9010.180   REMARK     SSR Record Stop
9010.190   SENDLIST   SSR0-Rec-Stop-L0;
```

Figure 3 Procedure Generated by All-Payloads Generator

- a. Procedure Title and Description.
- b. Procedure call for OBC Selection.
- c. Pre-Requisite Telemetry checks.
- d. SSR Record commands.
- e. ODHS (On Board Data Handling and Storage System) configuration macros for payloads to be operated.
- f. **Payload** configuration sub-procedure calls.
- g. Wait for data recording in SSR.
- h. Payload acquisition disable commands.
- i. Stop SSR Recording.
- j. Switch ON and configure XBS and TWTA.
- k. Configure DH for data downlink.
- l. Playback recorded data from SSR.
- m. Switch off XBS.
- n. Procedure footer.

3. VELC Procedure Generator

Each of the 4 sub-payloads of VELC have 32 command words to be uplinked for its configuration and BDH configuration requires 70 commands, to acquire VELC data. The BDH command formation is based on mathematical computations, depending on the data rates of the sub-payloads. The 32 words in VELC configuration are decided based on the programmable parameters in the VELC payload. The automated procedure generator is used to generate the VELC procedures taking all the above requirements into account.

Figure 4 VELC Procedure Generator

3.1. CSV Files as Input

Sl. No	ConfigName	CONT	SPEC1	SEPC2	IR	CI/CB	BDH
10	VELC-10	1	1	1	1	Include	M
11	VELC-11	2	2	2	2	Include	M
12	VELC-12	3	3	3	3	Include	M
13	VELC-13	4	4	4	4	Include	M
14	VELC-14	6	6	6	6	Include	M
15	VELC-15	7	7	7	7	Include	M
16	VELC-16	12	9	9	9	Bypass	M
17	VELC-17	12	10	10	9	Bypass	M
18	VELC-18	11	8	8	11	Bypass	M
19	VELC-19	12	8	8	12	Bypass	M
20	VELC-20	A	A	A	A	Bypass	M
21	VELC-21	B	B	B	B	Bypass	M
22	VELC-22	C	C	C	C	Bypass	M
23	VELC-23	D	D	D	D	Bypass	M
24	VELC-24	E	E	E	E	Bypass	M

Figure 5 Input to VELC Procedure Generator:
velc.csv

The input csv files to be used are *velc.csv* and 3 csv files each for sub-payloads as in Fig. 5. *velc.csv* shall contain the main VELC configuration names, corresponding sub-payload configuration names for Continuum, SP1, SP2, IR, and compression status. *dh-cfg.csv*, *pl-cfg.csv*, *checks.csv* for each sub-payload shall contain details for DH configuration, sub-payload configuration and telemetry checks corresponding to configuration name specified in *velc.csv*.

Each row in *velc.csv* corresponds to a given VELC configuration. These csv files shall be prepared from the configuration details provided by payload and DH subsystem teams.

Test Name	Exp Time (ms)	line time no (0.1 ms)	Frame time no (74 ms)	Frame binning Count	No Of Frames
FT1	10	77	0	10	16
FT2	50	382	0	10	16
FT3	4.978	38	0	10	64
FT4	296.512	0	4	5	16
FT5	518.896	0	7	5	16
FT6	1037.792	0	14	1	16
FT7	2001.456	0	27	1	16
FT8	3039.248	0	41	4	16
FT9	5040.704	0	68	1	16
FT10	10081.408	0	136	1	16
FT11	50110.528	0	676	1	8
FT12	100221.056	0	1352	2	8
FT13	10	382	0	10	16
FT14	50	382	0	7	16
FTA	222.384	0	3	10	8
FTB	2000.7	0	27	1	279
FTC	2000.7	0	27	1	438
FTD	2000.7	0	27	1	48
FTE	100221.056	0	1352	1	16
FTF	100221.056	0	1352	1	16
FTG	4.978	38	0	32	16
FTH	148.256	0	2	2	16

Figure 6 Input to VELC Procedure Generator: cnt-dh-cfg.csv

3.2. Procedure Generation Methodology

For each row in *velc.csv*, our software checks for the corresponding sub-payload configuration name for Continuum, SP1, SP2 and IR and compression selection status. For each sub-payload configuration name identified, the software shall look for mapping in corresponding sub-payload csv file. For instance, consider *VELC-10* configuration in Fig. 5 with Continuum configuration=1. Our procedure generator shall look for *FT-1* in *cnt-dfu-cfg.csv* for corresponding DH configuration and *cnt-pl-cfg.csv* for payload configuration, shown in Fig. 6 and Fig. 7. DH configuration details includes Exposure Time, Line Time No, Frame Time No, Frame Binning Count, No of Frames and few more parameters not shown in figure due to space constraints. Based on these parameters, corresponding DH configuration commands shall be inserted into the procedure. Similarly, commands shall be inserted for SP1, Sp2 and IR as well. Payload configuration includes 32 words to be uplinked for a selected configuration which shall be inserted by the software.

3.2.1. DH Configuration Commands for Visible Chains

A batch of 8 configuration commands are to be sent to DH, for chain1 and chain2 configuration of Continuum, SP1 and SP2. Details of these configuration commands to be sent for Continuum are enumerated below for chain1. A similar set of commands are to be sent for chain1 and chain2

```

frameTimeNo : from csv
totalPixels : from csv
pixelsPerRow : from csv

if (frameTimeNo == 0){
    timePeriod = frameBinningCount *
146.4192 * 50;
} else {
    timePeriod = frameBinningCount *
((frameTimeNo* 74.128) + 72.2912) *
50;
}

dataRate = (totalPixels * 16.0 *
1000/timePeriod);
ratioComponent = dataRate * (2592.0 /

```

Algorithm 1 : Additional Computation for each Visible Chain

	word1	word2	word3	word4	word5	word6	word7
FT1	AAAA	EC20	1000	0	004D	000A	0
FT2	AAAA	D820	1000	0	017E	000A	0
FT3	AAAA	CC00	1000	0	26	000A	0
FT4	AAAA	8560	1000	4	0	5	0
FT5	AAAA	8A80	1000	7	0	5	0
FT6	AAAA	E400	1000	000E	0	1	0
FT7	AAAA	EC20	1000	001B	0	1	0
FT8	AAAA	8160	1000	29	0	4	0
FT9	AAAA	D400	1000	44	0	1	0
FT10	AAAA	C3C0	1000	88	0	1	0
FT11	AAAA	C680	1000	02A4	0	1	0
FT12	AAAA	A000	1000	548	0	2	0
FT13	AAAA	8C00	1000	0	017E	000A	0
FT14	AAAA	8C00	1000	0	017E	7	0
FTA	AAAA	8020	1000	3	0	000A	0
FTB	AAAA	CE80	1000	001B	0	1	0
FTC	AAAA	CFE0	1000	001B	0	1	0

Figure 7 Input to VELC Procedure Generator: cnt-pl-cfg.csv

configuration of all three visible channels. It is to be specifically noted that value is a Hexadecimal number. Few variables used are directly available in the input csv files while few are derived based on Algorithm. 1:

- Mnemonic: DH-VLCntCh1Cfg1
Value: First 2 nibbles of (*totalPixels*+32)
- Mnemonic: DH-VLCntCh1Cfg2

- Value: Last 4 nibbles of $(totalPixels + 32)$
- Mnemonic: DH-VLCntCh1Cfg3
Value: 4 nibbles of $(pixelsPerRow)$
- Mnemonic: DH-VLCntCh1Cfg4
Value if *alternate gain*=true:
4 nibbles of $(rowsPerFrame)$
- Value if *alternate gain*=false:
 $(rowsPerFrame/2) + 4096$
- Mnemonic: DH-VLCntCh1Cfg5/6
Value: Fixed to 0
- Mnemonic: DH-VLCntCh1Cfg7
Value: First 4 nibbles of *subpayloadRatio* for Continuum as per computations shown in Algorithm. 1.
- Mnemonic: DH-VLCntCh1Cfg8
Value: Last 4 nibbles of *subpayloadRatio* for Continuum as per computations shown in Algorithm. 1.

Refer Alogorithm.1 for additional computations done for visible channels including CNT, SP1 and SP2. These computations shall be done for each of the visible chain sub-payloads, separately for chain 1 and chain 2.

3.2.2. DFU Configuration Commands for IR Chain

A batch of 6 configuration commands are to be sent to DH, for IR configuration. Details of these configuration commands are enumerated below.

- Mnemonic: DH-VL-IR-Cfg1
Value if *compression*=true:
 $rowsPerFrame + 4096 + 16$
- Value if *compression*=false:
 $rowsPerFrame + 16$
- Mnemonic: DH-VL-IR-Cfg2
Value: 4 nibbles of $(rowsPerFrame + 32768)$
- Mnemonic: DH-VL-IR-Cfg3
Value: 4 nibbles of $(pixelsPerRow)$
- Mnemonic: DH-VLCntCh1Cfg [4/5/6]
Value: Fixed to 0
- SDRAM Read Window Command
Mnemonic: DH-M1BWcfgChCmp

Value: 4 nibbles of *sramReadCmdVal* as per additional computation in Algorithm. 2.

3.3. Procedure Structure for DH Configuration

```

totalPixels : from csv
frameTime : from csv
e = (((frameTime - 53) / 50) + 1);
period = derived from e based on lookup table
dataRate = (totalPixels * 12 / period) *
1000;
if (visibleCompression.equals("Include"))
{
    sramReadCmdVal =
        0x8000 + 4096 +
        (int) Math.floor((256 - dataRate) *
        (312.0 / 256));
} else{
    sramReadCmdVal =
        0x8000 + (int) Math.floor((256 -
        dataRate) * (312.0/256));
}

```

Algorithm 2 : Addition Computation for IR Chain

The procedure operation sequence for Aditya-L1 VELC DH Configuration is as follows and a part of the same is shown in Fig. 8:

- Procedure Title and Description.
- Acquisition Disable for VELC.
- DESER Disable.
- DH-VELC Reset Commands.
- VELC Bandwidth configuration 1.
- VELC DESER Enable.
- Strip ID selection.
- Specific Bandwidth Configuration settings.
- CNT, SP1, SP2 configuration 1 to 8 for chain 1 and chain 2 if applicable, followed by IR configuration 1 to 6, if applicable.
- DH Operation enable for VELC.

- k. DH VELC Acquisition enable based on sub payloads applicable for the given configuration.
- l. DH Telemetry checks for the above settings.

9836.20	SENDLIST	DH-VLCntCh1Cfg1 56; DH-VLCntCh1Cfg2 b22a; DH-VLCntCh1Cfg3 0a20; DH-VLCntCh1Cfg4 1448; DH-VLCntCh1Cfg5 0000; DH-VLCntCh1Cfg6 0000; DH-VLCntCh1Cfg7 10; DH-VLCntCh1Cfg8 0002; DH-VLCntCh2Cfg1 56; DH-VLCntCh2Cfg2 b22a; DH-VLCntCh2Cfg3 0a20; DH-VLCntCh2Cfg4 1448; DH-VLCntCh2Cfg5 0000; DH-VLCntCh2Cfg6 0000; DH-VLCntCh2Cfg7 10; DH-VLCntCh2Cfg8 0002; DH-VLSP1Ch1Cfg1 16; DH-VLSP1Ch1Cfg2 7a2a; DH-VLSP1Ch1Cfg3 02a0; DH-VLSP1Ch1Cfg4 1448; DH-VLSP1Ch1Cfg5 0000; DH-VLSP1Ch1Cfg6 0000; DH-VLSP1Ch1Cfg7 20; DH-VLSP1Ch1Cfg8 0001; DH-VLSP1Ch2Cfg1 16; DH-VLSP1Ch2Cfg2 7a2a; DH-VLSP1Ch2Cfg3 02a0; DH-VLSP1Ch2Cfg4 1448; DH-VLSP1Ch2Cfg5 0000; DH-VLSP1Ch2Cfg6 0000; DH-VLSP1Ch2Cfg7 20; DH-VLSP1Ch2Cfg8 0001
9836.30	SENDLIST	DH-VLSP2Ch1Cfg1 16; DH-VLSP2Ch1Cfg2 7a2a; DH-VLSP2Ch1Cfg3 02a0; DH-VLSP2Ch1Cfg4 1448; DH-VLSP2Ch1Cfg5 0000; DH-VLSP2Ch1Cfg6 0000; DH-VLSP2Ch1Cfg7 30; DH-VLSP2Ch1Cfg8 0001; DH-VLSP2Ch2Cfg1 16; DH-VLSP2Ch2Cfg2 7a2a; DH-VLSP2Ch2Cfg3 02a0; DH-VLSP2Ch2Cfg4 1448; DH-VLSP2Ch2Cfg5 0000; DH-VLSP2Ch2Cfg6 0000; DH-VLSP2Ch2Cfg7 30; DH-VLSP2Ch2Cfg8 0001; DH-VL-IR-Cfg1 1014; DH-VL-IR-Cfg2 8200; DH-VL-IR-Cfg3 00a0; DH-VL-IR-Cfg4 0000; DH-VL-IR-Cfg5 0000; DH-VL-IR-Cfg6 0000
9836.40	SEND	DH-VL-M1-OpEna; DH-VL-M2-OpEna

Figure 8 Generated DH Configuration Procedure

3.4. Procedure Structure for Payload Configuration

The procedure operation sequence for Aditya-L1 VELC Payload Configuration is as follows and is shown in Fig. 9:

- a. Procedure Title and Description.
- b. Switch to bulk mode of commanding.
- c. *SENDLIST* with remote uplink of 32 words.
- d. TM checks of all words uplinked above.

3.5. Procedure Structure for total VELC Configuration

The procedure structure of total VELC configuration is a combination DH configuration for VELC and sub-payload configuration as follows:

- a. Procedure Title and Description.
- b. VELC DH configuration as per 3.3.
- c. VELC DH configuration as per 3.4.

4. SUIT Procedure Generator

The SUIT payload generator generates IST procedures for SUIT payload testing from input program files provided by subsystem team. These program files are not as per the IST procedure format for ground checkout testing. Hence, these files are taken up by the software and converted to *SENDLIST* blocks with *SUIT-DATA-COMMANDS* as supported by ACSS, with data portion extracted from the input program sequence.

Figure 9 Generated Payload Configuration Procedure

5. Performance and Generation Time

In the conventional procedure preparation methodology, each procedure would be prepared manually by checking the Payload and DFU configuration details. As per our calculation this process would have taken 2 weeks' time for Aditya-L1 payload IST procedures.

Figure 10 SUIT Procedure Generator

The procedure generation time with the automated procedure generator is the sum of csv preparation time from the available payload and DFU configuration details and generation time from the software. The input csv preparation shall be done once at beginning of the project, from details provided by subsystem teams which took around 1 week. Subsequently, the procedures for VELC, SUIT and All-Payloads were generated in less than 10 seconds using the software. As evident the procedure preparation time with automated generator took only half the time as compared to the conventional procedure generation methodology. This essentially means that the procedure preparation delays before and during IST were drastically reduced.

Further, updates in configuration for around 20 plus configurations were carried out throughout the period of Aditya-L1 IST. We could accommodate these changes in *csv* and generated updated procedure within 10 seconds.

6. Conclusion

The automated procedure generator as described above gave 100% improvement in the initial procedure generation time. While any updates in procedure during the course of IST were carried out instantly with the procedure generator which drastically reduced delays during IST and thus reducing spill overs in test schedule. We are further working on generic automated procedure generators which can be used in any spacecraft project with minor modifications.

Acknowledgements

The authors would like to thank Group Director of Spacecraft Checkout Group, Deputy Director of Integration and Checkout Area and Director of U.R Rao Satellite Centre for their continuous encouragement and valuable support during the entire period of our work.

References

[1] David Kopec, Classic Computer Science Problems in Java, Manning, 2020.

[2] Tripathi, Durgesh, D. Chakrabarty, A. Nandi, B. Raghvendra Prasad, A. N. Ramaprakash, Nigar Shaji, K. Sankarasubramanian, R. Satheesh Thampi, and V. K. Yadav. "The Aditya-L1 mission of ISRO." Proceedings of the International Astronomical Union 18, no. S372 (2022): 17-27.

[3] S.K. Goyal, P. Kumar, P. Janardhan, S.V. Vadawale, A. Sarkar, M. Shanmugam, K.P. Subramanian, B. Bapat, D. Chakrabarty, P.R. Adhyaru, A.R. Patel, S.B. Banerjee, Manan S. Shah, Neeraj K. Tiwari, H.L. Adalja, T. Ladiya, M.B. Dadhania, A. Sarda, A.K. Hait, M. Chauhan, R.R. Bhavsar, Aditya Solarwind Particle EXperiment (ASPEX) onboard the Aditya-L1 mission, Planetary and Space Science, Volume 163, 2018, Pages 42-55, ISSN 0032-0633, <https://doi.org/10.1016/j.pss.2018.04.008>.

[4] K. Sankarasubramanian, Manju Sudhakar, Anuj Nandi, M. C. Ramadevi, Abhijit Avinash Adoni, Ankur Kushwaha, Anil Agarwal, Arjun Dey, Bhawan Joshi, Brajpal Singh, V. Girish, Ishan Tomar, Kamal Kumar Majhi, Kumar, Manjunath Olekar, Monoj Bug, Manohar Pala, Mukund Kumar Thakur, Rajeev R. Badagandi, B. T. Ravishankar, Sarthak Garg, N. Sitaramamurthy, N. Sridhara, C. N. Umapathy, Vinod Kumar Gupta, Vivek Kumar Agrawal and B. Yougandar. X-Ray Spectrometers On-Board Aditya-L1 for Solar Flare Studies. Current Science. 113 (2017): 625-627. 10.18520/cs/v113/i04/625-627.

[5] Tripathi, Durgesh, Anamparambu N. Ramaprakash, Aafaque R. Khan, Avyarthana Ghosh, Subhamoy Chatterjee, Dipankar Banerjee, Pravin A. Chordia, Achim M. Gendorfer, Natalie A. Krivova, Dibyendu Nandy, Chaitanya V. Rajarshi and Sami K. Solanki. "The Solar Ultraviolet Imaging Telescope on-board Aditya-L1." Current Science 113 (2017): 616-619. 10.18520/cs/v113/i04/616-619.

[6] B. Raghavendra Prasad, Dipankar Banerjee, Jagdev Singh, S. Nagabhushana, Amit Kumar, P. U. Kamath, S. Kathiravan, Suresh Venkata, N. Rajkumar, V. Natarajan, Madhur Juneja, Pawan Somu, Vaibhav Pant, Nigar Shaji, K. Sankarasubramanian, Asit Patra, R. Venkateswaran, Abhijit Avinash Adoni, S. Narendra, T. R. Haridas, Shibu K. Mathew, R. Mohan Krishna, K. Amareswari and Bhavesh Jaiswal. (2017). Visible Emission Line Coronagraph on Aditya-L1. Current Science. 113. 613-615. 10.18520/cs/v113/i04/613-615.

[7] Thampi, R. & Alok, Abhinav & Bhardwaj, Anil & Yadav, Vipin. (2014). Plasma Analyser Package for Aditya (PAPA) - A novel plasma analyser to study the composition and dynamics of the Solarwind, 2014, 18th National Space Science Symposium (NSSS-2014), Dibrugarh University, Dibrugarh, Assam, India.

[8] Yadav, Vipin & Vijaya, Y. & Prasad, B. & Srikar, P.T. & Mahajan, Monika & Mallikarjun, K.V.L.N. & Zamani, Syeeda & Kandpal, M.M. & Narendra, S. & Adoni, Abhijit & Rai, Vijay & D.R., Veerasha & Srivastava, Nandita & Vichare, Geeta. (2024). Fluxgate Magnetometer Onboard Aditya-L1 Spacecraft: The Journey so far, 2024, International Conference on Planets, Exoplanets and Habitability, Physical Research Laboratory (PRL), Ahmedabad, India.

[9] User Guide – opencsv, A simple library for reading and writing CSV in Java [Online]. Available: <http://opencsv.sf.net>.

Aravind Sunil is working as Scientist/Engineer SE in Payload Data Acquisition, Analysis and Processing Division, Spacecraft Checkout Group, URSC. He has been working in SCG since 2017 and has been working on Payload Data Analysis and Processing.

Aravind completed B.Tech in Computer Science and Engineering from College of Engineering Chengannur, affiliated to Cochin University of Science and Technology, Kerala. While pursuing MS by Research in IIT Madras, he completed courses on Machine Learning, Natural Language Processing and Reinforcement Learning. His areas of interest includes Web Development, Machine Learning and Parallel Processing. He worked as Checkout Test Engineer in Aditya-L1.

Senapati Govinda has been working as a scientist at U R Rao Satellite Centre/ISRO since 2018. His area of interests includes Payload data processing and Microwave remote sensing characterization.

Subbaraya Sastry C.V.R received B.E in Electronics and Communication Engineering from Andhra University, Visakhapatnam and M.Tech in Computer Science and Technology from Andhra University, Visakhapatnam in 1994. From December 1998 till

date, he has been working with U.R Rao Satellite Centre (URSC), Bangalore. He has held several positions namely Project Engineer, Project Manager (PM), Deputy Project Director (DPD), Section head, Division Head during this period. He is fellow of IETE, Life member Indian Society of Systems for Science and engineering (ISSE) Life member of Astronomical Society of India (ASI), and Senior member of IEEE. His areas of interest include, among other things, Software Engineering, High-Performance Computing, Real-Time Operating Systems, and Database Management Systems.

Narayana Rao GS is currently working as Scientist/Engineer SF in Payload Data Acquisition, Analysis and Processing Division, Spacecraft Checkout Group, URSC. He completed B.E in Computer Science and Engineering from Visvesvaraya Technological University, Belgaum, Karnataka in 2007. He completed M.Tech in Artificial Intelligence and Machine Learning from Indian Institute of Space Science and Technology, Thiruvananthapuram in 2012. His interests include Software Engineering, Artificial Intelligence, Machine Learning, Database Management systems and Optimization. He was Project Manager for Checkout activities in Aditya-L1.

Prakriti Sahay is currently working as Scientist/Engineer SE in Payload Data Acquisition, Analysis and Processing Division, Spacecraft Checkout Group, URSC. She pursued her M.Tech from IIT-ISM-Dhanbad in Electronics and Communication Engineering. She has been working in URSC since 2017. Her areas of interests include Software Designing and development for Checkout Operations and RF Instrumentation.