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Abstract

Human-Centered Artificial Intelligence (HCAI) emphasizes
aligning intelligent system behavior with human goals, cognitive
states, and contextual needs. Although prior research has explored
adaptive and affect-aware systems, most existing approaches
remain reactive and rely on isolated interaction signals. This paper
proposes a framework for intent-aware personalization in human-
centered Al, grounded in multimodal cognitive interaction signals
such as gaze, affect, physiological responses, and paralinguistic
audio cues. The framework theorizes how multimodal cognitive
signal integration enables accurate intent inference, which in turn
drives adaptive personalization mechanisms that enhance
engagement, reduce cognitive load, and improve trust. A set of
research propositions is presented to guide future empirical
validation. The proposed framework provides a theoretical
foundation for designing
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1. Introduction

Artificial Intelligence (AI) systems have evolved
from static automation tools into interactive entities
embedded in learning, decision support, and collaborative
environments. As Al systems increasingly interact with
humans, aligning system behavior with human goals and
cognitive states has become a critical challenge. This shift
has led to the emergence of Human-Centered Artificial
Intelligence (HCAI), which emphasizes human needs,
transparency, and adaptability in intelligent system design

(1].

Despite advances in adaptive interfaces and
affect-aware computing, many Al systems still rely
on reactive personalization strategies, adjusting
system behavior only after explicit feedback or
performance degradation occurs [2]. Such approaches
are insufficient in cognitively demanding scenarios,
where user intent may shift rapidly due to changes in
attention, emotion, or workload. Consequently,
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understanding and anticipating user  intent has
emerged as a central research challenge in HCAI [3].

Previous studies have explored intent inference
using unimodal interaction signals such as gaze,
speech, or physiological data [4], [5]. However,
unimodal approaches often provide incomplete or
ambiguous representations of user state. Recent
advances in multimodal interaction suggest that
integrating heterogeneous cognitive signals can yield
richer and more robust representations of human
behavior [6]. Nevertheless, the theoretical
relationships between multimodal eyesignals, intent
inference, and adaptive personalization remain
underdeveloped. To address this gap, this paper
proposes a  framework for intent-aware
personalization in human-centered Al. Rather than
presenting a system implementation or experimental
evaluation, this work theorizes how multimodal
cognitive interaction signals can be integrated to infer
user intent and drive adaptive personalization
mechanisms that enhance engagement, reduce
cognitive load, and improve trust.

2. Literature Review

a) Human-Centered Artificial Intelligence

HCALI focuses on designing intelligent systems
that respect human cognitive processes, values, and
goals. Research has shown that human-centered design
improves usability, trust, and long-term engagement in
intelligent interfaces [7]. In interactive and immersive
environments, aligning system behavior with human
expectations has been shown to enhance collaboration
effectiveness and situational awareness [8].
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However, many HCAI approaches emphasize
explainability or interface usability while offering
limited guidance on how systems should dynamically
adapt to evolving wuser intent. As a result,
personalization mechanisms often remain static or
rule-based, limiting their effectiveness in complex
interaction contexts [9].

b) Multimodal Cognitive Interaction Signals

Multimodal cognitive interaction signals—
including gaze, facial expressions, speech dynamics,
and physiological responses—are widely used to infer
user attention, emotion, and cognitive workload [10].
Gaze tracking provides insight into visual attention and
task focus, while physiological signals such as heart
rate variability and galvanic skin response correlate
with mental effort and stress [11].

Although each modality contributes valuable
information, unimodal analysis suffers from ambiguity
and noise. To address these limitations, multimodal
fusion techniques have been proposed to integrate

heterogeneous signals into unified representations [12].

Such approaches have demonstrated improved
robustness and predictive performance across diverse
interaction environments, including virtual and
augmented reality systems [13].
c) Intent Inference and
Personalization

Adaptive

Intent inference refers to a system’s ability to
recognize what users aim to accomplish during
interaction. Prior work has investigated intent
modeling using multimodal behavioral and task-
related signals in adaptive and intelligent systems [14].
Adaptive personalization systems leverage inferred
user state to adjust content delivery, feedback, and
interaction strategies, enhancing engagement when
personalization is contextually appropriate [15].

However, excessive or poorly calibrated
adaptation may increase cognitive load or disrupt user
flow, particularly in multimodal environments [16].
Importantly, existing models rarely conceptualize
intent inference as a central mediating construct
linking  multimodal  signals and  adaptive
personalization.

3. Framework Development

The proposed framework conceptualizes
human—Al interaction as a dynamic process driven by
multimodal cognitive interaction signals. Human
cognitive signals form the input layer, which is
transformed through multimodal cognitive signal
integration into a unified representation. This
representation enables intent inference, conceptualized
as the central mediator between human state and
system behavior. Inferred intent subsequently drives
adaptive personalization mechanisms, resulting in
improved human-centered outcomes such as
engagement, reduced cognitive load, and trust.

3.1 Design  Principles for Intent-Aware

Human-Centered Al

To further clarify the relationships between the
core constructs of the proposed framework, Figure 1
presents a conceptual instantiation of intent-aware
human-centered Al. Rather than depicting a concrete
system implementation, the figure provides an
illustrative architectural view that translates the
theoretical components of the framework into a
coherent interaction pipeline. This visualization aims
to support conceptual understanding of how
multimodal cognitive interaction signals may be
processed, integrated, and leveraged to drive intent-
aware adaptive personalization in future systems.

As illustrated in Figure 1, the framework
begins with a sensor input layer that captures
heterogeneous cognitive interaction signals, including
visual behavior, audio cues, physiological responses,
and gaze patterns. These signals are temporally aligned
and integrated through a multimodal cognitive signal
fusion process, enabling the construction of a unified
representation of the user’s cognitive state.

This integrated representation supports intent
inference, which is conceptualized as the central
mediating mechanism between human cognitive
signals and adaptive system behavior. Inferred user
intent  subsequently informs the  adaptive
personalization core, enabling real-time adjustment of
system responses, interaction strategies, and content
presentation.
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Figure 1. Conceptual Architecture of an Intent-Aware
Human-Centered Al System

The framework further incorporates an
adaptive feedback loop that allows personalization
strategies to evolve over time, while conceptually
supporting  privacy-preserving learning through
decentralized or federated update mechanisms.
Importantly, the figure serves as a conceptual
illustration of the theoretical relationships proposed in
this work, rather than a prescriptive or fully specified
system architecture. While specific computational
components are shown for illustrative purposes, the
framework remains algorithm-agnostic and is intended
to guide future empirical implementations rather than
constrain them.

To translate the proposed conceptual
framework into actionable guidance for system design,
this work derives a set of design principles grounded in
prior literature on multimodal interaction, intent
inference, and adaptive personalization. These
principles articulate how the core components of the
framework should be operationalized to support
reliable intent-aware human-centered Al systems.

DP1. Multimodal cognitive interaction signals
should be jointly leveraged to support reliable
intent inference.

Prior studies have shown that unimodal signals
such as gaze, speech, or physiological responses
provide incomplete and sometimes ambiguous
indicators of user state [4], [5], [10]. Integrating
multiple cognitive modalities enables a richer and
more robust representation of human behavior, which
supports more accurate inference of user intent [6],
[12].

DP2. Multimodal cognitive signal integration
should function as a mediating layer between raw
cognitive signals and intent inference.

Multimodal integration techniques reduce
noise and ambiguity by aligning heterogeneous signals
into a shared representational space [6], [12]. This
integration enables higher-level reasoning about user
state that cannot be achieved through isolated signal
processing, thereby mediating the relationship between
raw cognitive signals and accurate intent inference [1].

DP3. Adaptive personalization strategies should be
driven by inferred user intent rather than surface-
level interaction patterns.

Research on adaptive interfaces and intelligent
systems indicates that personalization is more effective
when grounded in an understanding of user goals
instead of observable behaviors alone [2], [14].
Accurate intent inference allows systems to anticipate
user needs and tailor responses accordingly, improving
alignment between system behavior and user
objectives [15].

DP4. Intent-aware adaptive personalization should
aim to minimize users’ cognitive load during
interaction.

Studies on cognitive load and adaptive
interaction suggest that poorly timed or irrelevant
system adaptations can increase mental effort [11],
[16]. In contrast, intent-aware personalization enables
systems to regulate interaction complexity and
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feedback based on inferred user intent, thereby
reducing unnecessary cognitive burden [4].

DPS. Intent-aware personalization should enhance
user engagement and trust by maintaining
relevance and predictability of system behavior.

Prior work has demonstrated that adaptive
systems increase engagement and trust when system
responses are perceived as relevant and predictable [7],
[8]. Personalization strategies informed by user intent
strengthen this perception by aligning system behavior
with user expectations and interaction goals [15].

DP6. Intent-aware personalization mechanisms
should be particularly emphasized in high cognitive
workload contexts.

In cognitively demanding environments such
as learning and immersive interaction, users are
especially sensitive to misalignment between system
behavior and intent [11], [13]. Empirical evidence
indicates that adaptive systems yield greater benefits
under high workload conditions, amplifying the
effectiveness of intent-aware personalization [4], [16].

3.2 Operationalization and Measurement
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Figure 2. Conceptual Framework for Intent-Aware Human-
Centered Al

To support future empirical validation of the
proposed conceptual framework (Figure 2), this
section outlines how each construct can be

operationalized and measured in practice. Human
cognitive interaction signals can be quantified using
standard indicators such as gaze fixation patterns,
paralinguistic speech features, physiological workload
measures, and affective state estimations [4], [5], [10],
[11]. These signals provide complementary
perspectives on user attention, emotion, and cognitive
effort.

Multimodal cognitive signal integration can be
operationalized through the quality of fusion achieved
across modalities, measured via performance gains
over unimodal baselines, robustness under modality
dropout, and real-time processing latency [6], [12].
Intent inference can be evaluated using predictive
accuracy, temporal stability of inferred intent, and
time-to-correct-intent metrics [14].

Adaptive personalization may be measured by
observable system adaptation behaviors, including
adaptation frequency, latency, and perceived
appropriateness of responses relative to inferred intent
[2], [3], [7]. Finally, human-centered outcomes can be
assessed using engagement metrics, standardized
cognitive load instruments (e.g., NASA-TLX), trust
scales, and task effectiveness measures [7], [8], [11],
[16].

Together, these operationalization guidelines provide a
practical pathway for translating the proposed
conceptual framework into empirical studies, while
preserving its theoretical orientation.

4. Conclusion

This paper presented a framework for intent-
aware personalization in human-centered Al, grounded
in multimodal cognitive interaction signals. By
positioning intent inference as the central mediator
between human cognitive states and adaptive system
behavior, the framework advances existing approaches
beyond reactive personalization. The proposed
research propositions and operationalization guidance
provide a foundation for future empirical validation
and system design. Overall, this work contributes a
theoretically grounded perspective to the development
of anticipatory, human-aligned Al systems
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