To search, Click below search items.


All Published Papers Search Service


Deconstructing Opinion Survey: A Case Study


Entesar Alanazi


Vol. 21  No. 4  pp. 52-58


Questionnaires and surveys are increasingly being used to collect information from participants of empirical software engineering studies. Usually, such data is analyzed using statistical methods to show an overall picture of participants' agreement or disagreement. In general, the whole survey population is considered as one group with some methods to extract varieties. Sometimes, there are different opinions in the same group, but they are not well discovered. In some cases of the analysis, the population may be divided into subgroups according to some data. The opinions of different segments of the population may be the same. Even though the existing approach can capture the general trends, there is a risk that the opinions of different sub-groups are lost. The problem becomes more complex in longitudinal studies where minority opinions might fade over time. Longitudinal survey data may include several interesting patterns that can be extracted using a clustering process. It can discover new information and give attention to different opinions. We suggest using a data mining approach to finding the diversity among the different groups in longitudinal studies. Our study shows that diversity can be revealed and tracked over time using the clustering approach, and the minorities have an opportunity to be heard.


Longitudinal Studies, Clustering, Opinion Diversity, Expert Opinion, Survey Opinion