To search, Click below search items.


All Published Papers Search Service


Enhanced CT-image for Covid-19 classification using ResNet 50


Lobna M.Abouelmagd, Manal soubhy Ali Elbelkasy


Vol. 24  No. 1  pp. 119-126


Disease caused by the coronavirus (COVID-19) is sweeping the globe. There are numerous methods for identifying this disease using a chest imaging. Computerized Tomography (CT) chest scans are used in this study to detect COVID-19 disease using a pre-train Convolutional Neural Network (CNN) ResNet50. This model is based on image dataset taken from two hospitals and used to identify Covid-19 illnesses. The pre-train CNN (ResNet50) architecture was used for feature extraction, and then fully connected layers were used for classification, yielding 97%, 96%, 96%, 96% for accuracy, precision, recall, and F1-score, respectively. When combining the feature extraction techniques with the Back Propagation Neural Network (BPNN), it produced accuracy, precision, recall, and F1-scores of 92.5%, 83%, 92%, and 87.3%. In our suggested approach, we use a preprocessing phase to improve accuracy. The image was enhanced using the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm, which was followed by cropping the image before feature extraction with ResNet50. Finally, a fully connected layer was added for classification, with results of 99.1%, 98.7%, 99%, 98.8% in terms of accuracy, precision, recall, and F1-score.


COVID-19, CNN, Resnet50, BPNN, CLAHE, CT-scan