To search, Click
below search items.


All
Published Papers Search Service

Title

Some Properties of Graph R(2^{N})

Author

Chawalit Iamjaroen

Citation 
Vol. 7 No. 5 pp. 9094

Abstract

Let N be a positive integer, N ¡Ã 3, and R(2^{n}) be the set of all non isomorphic 2regular graphs of order N. The graph of realizations, R(2^{n}) , can be defined as a graph whose vertex set is R(2^{n}) two vertices are adjacent if one can be obtained from the other by a switching. It is known that the graph R(2^{n}) is connected. We prove in this paper that the graph R(2^{n}) is bipartite and it has no Eulerian trail for N ¡Ã 12.

Keywords

Realization, Bipartite, 2regular graph, Eulerian trail

URL

http://paper.ijcsns.org/07_book/200705/20070514.pdf

